01.07.2019

Испытание систем отопления и теплоснабжения. Гидравлические и манометрические испытания. Выбор манометра для системы отопления


Работа системы отопления должна быть не только эффективной, но и надежной. Для обеспечения этого необходимо правильно подобрать схему установки, комплектующие и расходные материалы. Согласно правилам — итоговым мероприятием установки или запуска являются испытания систем отопления: гидравлическое, тепловое, пневматическое.

Назначение испытаний отопления

Проверка должна быть обязательным мероприятием, так как в ходе этого могут быть выявлены скрытые и явные дефекты. Но как правильно провести тепловое или гидравлическое испытание системы отопления? Для этого следует обратиться к нормативному документу СНиП3.05.01-85.

В нем не рассказывается четкая методика выполнения этих процедур. Однако есть ссылка на ГОСТ 25136-82, в котором описываются рекомендации по составлению акта гидравлических испытаний системы внутреннего отопления. Эти мероприятия необходимо проводить как для автономных схем, так и для централизованного отопления. Они предназначены для следующего:

  • Предварительная проверка всех элементов схемы перед запуском. Минимизация вероятности поломки отдельных узлов;
  • Контроль соответствия готовой системы расчетным параметрам — температурному режиму, давлению и тепловой нагрузки;
  • В некоторых случая необходимо показать представителям из государственных структур акт испытания теплового эффекта систем отопления или другой документ, подтверждающий факт проверки.

Существует определенный порядок действий, согласно которому установлена очередность испытаний. Так, сначала составляется акт гидравлических испытаний системы внутреннего отопления, который может быть заменен пневматическим (пузырьковым). Итоговым является протокол теплового исследования работы системы отопления.

Прежде, чем приступить к испытаниям отопления — нужно выполнить предварительный расчет системы. Только так можно определить оптимальные показатели давления, что важно для дальнейшей опрессовки системы.

Гидравлическое испытание отопления

Фактически эта процедура представляет собой заполнение системы для проверки герметичности. В отличие от испытания систем отопления воздухом, гидравлическое воздействие показывает, насколько оборудование и компоненты готовы к зимнему сезону.

Для проведения гидравлического испытание системы отопления необходимо выполнение следующих условий:

  • Температура окружающей среды должна быть больше +5°С;
  • Узел подключения насосного оборудования для заполнения системы находится в самой низкой части схемы – в обратной трубе;
  • Если на некоторых участках отопления трубы закрыты – следует временно убрать защитные панели для визуального контроля наполнения системы.

В системе центрального отопления гидравлическую проверку осуществляют за 1,5-2 месяца до начала отопительного сезона. В подающем узле многоэтажного дома открывают коллекторы, через которые происходит заполнение трубопровода. Регулировку давления делают с помощью элеваторного узла. Заключительным этапом испытаний является заполненный акт гидравлической проверки системы внутреннего отопления.

Выполнением испытаний и составление акта должны заниматься только представители управляющей компании. Но жильцы вправе потребовать копию документа.


В некоторых случаях невозможно соблюдение основных условий для проведения гидравлического испытания отопительной системы. Подобная ситуация может возникнуть после выполнения ремонтных работ в зимний период, когда температура окружающей среды будет ниже +5°С. Тогда следует составить акт пневматического испытания системы отопления.

Его суть заключается в создании давления 100 кПа в магистралях отопления. При этом в течение 10 минут уровень его понижения не должен превышать 10 кПа. Для проверки этого следует использовать манометры с классом точности 2,5 и ценой деления не более 5 кПа. Все характеристики оборудования могут присутствовать в акте пневматического испытания системы отопления.

  • Технические условия не позволяют заполнение жидкостью. Чаще всего это связано с использованием антифриза;
  • Температура окружающей среды ниже 0;
  • Временно нет теплоносителя в требуемом объеме.

Основной проблемой при проведении испытания системы воздушным способом является поиск мест потери герметичности. Если во время процедуры было замечено резкое снижение давления – рекомендуется выполнение зональной проверки участков. Только так можно определить место возможной протечки. Поэтому предпочитают гидравлический метод, как более удобный.

По окончании составляет акт пневматического испытания отопительной системы, в который вносят результаты.

Тепловое испытание отопления


Своевременное тепловое испытание систем отопления позволит определить равномерность нагрева всех радиаторов и батарей. В отличие от вышерассмотренных документов, эту процедуру рекомендуется выполнять в обязательном порядке и для автономных схем.

Для центрального отопления эти действия выполняются не каждый год. Акт на тепловые испытания системы отопления составляется только в следующих случаях:

  • Введение системы в эксплуатацию;
  • Замена большей части компонентов на новые, изменение конфигурации трубопроводов.

Испытание системы отопления на прогрев зачастую совмещается с пробным запуском перед отопительным периодом. Для этого недостаточно заполнить трубопроводы теплоносителем и включить котел. Сначала следует выполнить прочистку системы, избавив ее от скопившегося мусора и известкового налета. Если этого не сделать — тепловые испытания системы отопления будут некорректными. Посторонние элементы будут влиять на теплопроводность радиаторов и труб, что напрямую скажется на их энергетической отдаче.

Лучше всего совместить гидравлическую и тепловую проверку. Таким образом можно предупредить появление воздушных пробок.

Центральное отопление


Для централизованной схемы заполнение акта испытания теплового эффекта систем отопления выполняется по определенным правилам. Главным из них является температура воды – она должна быть нагрета до +60°С.

Время проведения проверки должно составлять не менее 7 часов. Одновременно с этим выполняется регулировка отдельных компонентов для температурной балансировки узлов. Это отображается в акте на тепловые испытания системы отопления. В многоквартирных домах для каждого стояка делают отдельные измерения и сверяют общие показатели с аналогичными в элеваторном узле.

Какие преимущества для жильцов дома дают испытания системы отопления на прогрев?

  • Поверка фактических показателей теплоснабжения с заявленными от управляющей компании;
  • При установленном приборе учета и регулировки поступления теплоносителя (в элеваторном узле) — возможность определить оптимальный режим работы системы;
  • Своевременное выявление воздушных пробок.

Все эти работы должна выполнять управляющая компания. Это отображается в договоре на теплоснабжение. Итогом проверки будет акт испытания теплового эффекта системы центрального отопления.

В акте на тепловые испытания отопительной системы учитывается не только степень нагрева радиаторов и труб, но и температура в помещении.

Автономное отопление


Проведение испытаний автономной системы отопления на прогрев также необходимо. Во время выполнения этой процедуры можно заранее определить точки резкого перепада температуры. С помощью регулировочной арматуры выполняется настройка режимов работы радиаторов и батарей.

На практике для автономных схем не нужно составлять акт испытания теплового эффекта отопления. Но для определения порядка действий лучше всего принять методику для центрального отопления. Разница может заключаться в способах измерения:

  • Степень нагрева отопительных элементов проверяется установленными термометрами или по показаниям тепловизора;
  • Температура в помещении контролируется с помощью внешних датчиков.

Однако в летний период не будет учтено влияние низкой температуры на улице. Поэтому помимо вышеперечисленных показателей нужно брать во внимание степень теплоизоляции дома – тепловые потери.

Помните, что каждый тип испытания систем отопления (гидравлический, тепловой или пневматический) должен выполняться по определенной методике. Она же зависит от типа отопительной системы и внешних факторов.

В видеоматериале рассказывается об особенностях гидравлического испытания отопления в квартире:

Испытания системы отопления производят после окончания монтажных работ. Но сначала все трубопроводы санитарно-технических систем должны быть промыты.

До испытаний проверяют соответствие испытуемой системы отопления проекту, производят внешний осмотр трубопроводов, соединений, оборудования, приборов, арматуры.

Испытанию подвергают системы отопления в целом и отдельные виды оборудования, а также производят их регулирование. По результатам испытаний оформляют акты.

Испытания систем отопления, теплоснабжения выполняют гидростатическими и манометрическими (пневматическими) методами.

Гидростатические испытания системы отопления производят путем заполнения всех элементов системы водой (при полном удалении воздуха), повышения давления до пробного, выдержки системы под пробным давлением в течение определенного времени, снижения давления и при необходимости опорожнения системы. Гидростатическое испытание безопасно: систему опробуют в условиях, наиболее приближенных к рабочим. Однако такое испытание требует подачи воды в здание для наполнения санитарно-технической системы, что неприемлемо. При нарушении герметичности возможно затопление помещений, подмачивание строительных конструкций; в зимнее время возможно замерзание воды в трубах и их “размораживание”.

Поэтому гидростатические испытания систем отопления , теплоснабжения, котлов, водонагревателей выполняют при положительной температуре в помещениях здания. Температура воды, которой заполняют систему, должна быть не ниже 278°К (5°С).

Гидростатические испытания отопления проводят до отделки помещений.

Манометрические испытания системы отопления во многом лишены недостатков гидростатических испытаний, но они более опасны, так как при случайном разрушении трубопроводов или элементов систем под действием сжатого воздуха их куски могут попасть в людей, проводящих испытания.

Манометрические испытания отопления проводят, наполняя систему отопления сжатым воздухом под давлением, равным пробному, и выдерживая ее под этим давлением в течение определенного периода, затем давление снижают до атмосферного.

Для испытаний применяют пневмогидравлический агрегат ЦСТМ-10 в виде двухосного прицепа, на котором смонтированы емкость объемом 2,5 м3 и все оборудование для испытаний.

Испытание систем отопления . Приемка отопительных котельных производится на основании результатов гидростатического или манометрического испытания, а систем отопления – на основании результатов гидростатического и теплового испытаний, а также наружного осмотра смонтированных устройств и оборудования. Системы отопления испытывают на герметичность (но не на прочность) манометрическим методом под избыточным давлением воздуха 0,15 МПа для обнаружения дефектов монтажа на слух и затем давлением 0,1 МПа в течение 5 мин (при этом давление не должно снижаться более чем на 0,01 МПа).

Гидростатические испытания системы водяного отопления проводят по окончании ее монтажа и осмотра. Для этого систему наполняют водой и полностью удаляют из нее воздух, открыв все воздухосборники, краны на стояках и у отопительных приборов. Заполняют систему через обратную магистраль, подключив ее к постоянному или временному водопроводу. После наполнения системы закрывают все воздухосборники и включают ручной или приводной гидравлический пресс, которым создают требуемое давление.

Системы водяного отопления испытывают гидростатическим давлением, равным 1,5 рабочего давления, но не менее 0,2 МПа в самой низкой точке. На время испытания котлы и расширительный сосуд отсоединяют от системы. Падение давления во время испытания не должно превышать 0,02 МПа в течение 5 мин. Контролируют давление проверенным и опломбированным манометром с делениями на шкале через 0,01 МПа. Обнаруженные мелкие неисправности, не мешающие гидростатическому испытанию, отмечают мелом, а затем исправляют.

Монтаж и загородного дома.

Современное водяное отопление – это высокотехнологичная инженерная система, сложная и дорогая. Помимо эффективности, важнейшим свойством отопительных систем является надёжность, способность работать бесперебойно. К сожалению, вечного ничего нет, что-то изнашивается со временем, где-то практически сразу сказывается брак, допущенный при монтаже. Одной из основных причин отказов является разгерметизация контуров. А вот чтобы понять, есть ли утечка, чтобы найти проблемный участок производится опрессовка системы отопления. Реальность такова, что для обывателя эта важнейшая операция оказалась покрытой мраком. Возникает очень много вопросов и ошибочных предположений.

Что значит «опрессовать систему»

Прежде всего, разберёмся, что такое опрессовка системы отопления. По сути, это способ неразрушающего контроля. Опрессовка представляет собой процесс тестирования оборудования или трубопроводов пробным повышенным давлением (в систему нагнетается вода или воздух), или, как говорится в теплотехнических документах, «испытание на прочность и плотность». Идея проста: если система не даёт течи при избыточном давлении, то она будет бесперебойно функционировать и в нормальном режиме.

Важно! Опрессовкой здания называют комплекс мер, включающий в себя испытания и промывку трубопроводов, ревизию/замену некоторых рабочих элементов, восстановление целостности изоляции. В частном домохозяйстве «опрессовываться» может не только отопление, но также канализация, контур ГВС или трубы в водяной скважине.

Целью гидравлического испытания отопительной системы является проверка:

  • прочности корпусов и стенок всего контура (труб, теплообменников, радиаторов, арматуры);
  • плотности соединения различных элементов системы;
  • работоспособности кранов, рабочих манометров, клапанов и задвижек (они должны «держать»).

Трубы могут разрушаться под действием коррозии, случаются ситуации, когда трубопроводы получают механические повреждения, например во время проведения демонтажных работ при реконструкции дома. Крайне редкое явление, но иногда может попадаться заводской брак. Утечки чаще всего появляются в местах обвязки котлов, арматуры и отопительных устройств, на сборных фитингах и сварных/паяных соединениях. Высокие температуры и гидравлические удары потихоньку делают своё дело.

Гидравлические испытания – это регулярная обязательная профилактика

Когда нужно выполнять опрессовку

В зависимости от поставленных задач, принято выделять три типа опрессовки систем отопления в многоквартирных домах и частных коттеджах:

  • Первичная

Перед сдачей в эксплуатацию собранная новая система в обязательном порядке подвергается диагностике. Выполняется она после подключения всех элементов системы (теплогенератора, радиаторов, расширительного бака и т.д.), но до того, как трубопроводы будут скрыты за каркасами обшивки или, например, залиты стяжками. В основном проверяется качество сборки.

  • Очередная (повторная)

Профилактические гидравлические испытания системы или её участков рекомендуется производить каждый год, сразу после окончания отопительного сезона и проведения планового обслуживания. Цель: подготовиться к следующей зиме, свести к минимуму вероятность аварии.

  • Внеочередная (аварийная)

Опрессовать отопление необходимо, если выполнялся ремонт на каком-то участке или, например, демонтировался радиатор, отсоединялся котёл. Считается, что после промывки системы или запуска после длительного простоя её также нужно испытывать давлением. Естественно, при неполадках и отказах опрессовка является одним из методов диагностики – помогает найти повреждения и утечки.

Как производится опрессовка

Порядок опрессовки систем отопления регламентируется несколькими нормативными документами, которые описывают одни и те же операции, правда, не одинаково подробно. Нормы и правила опрессовки системы отопления изложены в следующих документах:

  • СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование»;
  • СНиП 3.05.01-85 «Внутренние санитарно-технические системы»;
  • «Правила технической эксплуатации тепловых энергоустановок» №115 (утверждено Приказом Минэнерго России от 24.03.2003).


Подключить гидропресс можно к радиатору (вместо крана Маевкого)

Порядок проведения работ

Этапы работ всегда одни и те же. Обобщённая инструкция по опрессовке водяного отопления могла бы выглядеть следующим образом:

  1. Участок, который необходимо проверить, с помощью кранов отключается от остальной сети. В автономной системе останавливается работа теплогенератора.
  2. Теплоноситель сливают.
  3. Контур отопления заполняется холодной водой (температура не более 45 градусов) через патрубок, расположенный в нижней части системы.
  4. По мере заполнения трубопровода сбрасывают воздух.
  5. К системе подключается устройство, нагнетающее давление.
  6. Давление поднимается до рабочего уровня (в соответствие с проектом). Производится предварительный визуальный контроль целостности системы.
  7. Давление ПЛАВНО повышается до испытательного уровня.
  8. Засекаются показатели контрольного манометра.
  9. Пробное давление выдерживается в системе не менее 10 минут.
  10. Выполняется визуальный осмотр трубопроводов на предмет явных утечек или «запотевания» в местах соединения труб (пайка, фитинги). Производится поиск свищей и разрывов на корпусах арматуры, секциях радиаторов, стенках труб по всей длине (в том числе фиксируются сдвиги и деформации). Проверяется работа кранов и задвижек.
  11. Снимаются текущие показания манометра. Если падения давления не произошло – тестирование системы можно считать успешным. В случае обнаружения неполадок, воду спускают, течь устраняют, опрессовка повторяется.
  12. По результатам испытания на прочность и плотность составляется акт.

Важно! Форма акта опрессовки системы отопления утверждается структурами управления тепловым хозяйством или руководителями энергопредприятий. Случается, что бланки актов в различных районах одного города могут отличаться, иногда их называют «ведомостью поэтапной приёмки» или «справкой готовности оборудования».


Опрессовка воздухом. Для создания пробного давления используется компрессор

Опрессовка отопительной системы воздухом обычно проводится, если временно отсутствует возможность заполнить систему водой, либо при испытаниях в условиях низких температур, когда есть вероятность, что вода в трубопроводе может замёрзнуть. При пневматическом тестировании разгерметизация контура определяется по показаниям контрольного манометра. Чтобы обнаружить утечку, проблемные места (например, соединительные фитинги на трубах или резьбы арматуры для подключения радиаторов) обрабатываются мыльным раствором.

Под каким давлением испытывается водяное отопление

Чаще всего застройщики интересуются тем, каким должно быть испытательное давление при опрессовке системы отопления. Согласно рекомендациям СНиП, указанным выше, отопительные системы проверяются давлением, превышающим рабочее в 1,5 раза (при этом не менее 0,6 МПа). Немного другая цифра приведена в «Правилах технической эксплуатации тепловых энергоустановок» – пробное давление должно быть минимум в 1,25 раза выше рабочего (не менее 0,2 МПа). Этот вариант «мягче» – будем ориентироваться на него.

В первую очередь нужно узнать рабочее давление системы. В частных домах с автономным отоплением (до 3 этажей) оно обычно не превышает 2 атмосфер, регулируется искусственно: при возникновении избыточного давления срабатывает сбросной клапан. В многоквартирных домах и общественных зданиях рабочее давление намного выше. Например, для пятиэтажных домов – порядка 3-6 атмосфер, а для зданий высотой от 8 этажей – около 7-10 атмосфер.


Большинство опрессовщиков оснащено встроенным контрольным манометром

В нормативных документах также говорится, что испытательное давление выбирается исполнителем в промежутке между минимальным и максимальным. С минимальным определились (20-30 процентов выше рабочего). От чего же зависит максимальный порог испытательного давления? Данные о максимуме предоставляются организацией, разработавшей проект. Вообще, в данном случае в расчёт берутся паспортные характеристики всех без исключения элементов системы:

  • труб,
  • теплогенераторов,
  • отопительных приборов,
  • арматуры.

Задача ограничения максимального пробного давления – не навредить системе в процессе опрессовки. Для примера, чугунные радиаторы рассчитаны на давление до 6, а панельные радиаторы – до 10 атмосфер.

Какой инструмент используется для опрессовки

Для испытания водяного отопления на прочность и плотность необходимо иметь нагнетающее устройство. Это насос, который через шланг высокого давления и обратный клапан подключается к одному из патрубков системы. Основные критерии выбора устройства – производительность (литры в минуту или мл/такт) и давление, которое он может обеспечить или контролировать (один и тот же электрический насос может снабжаться автоматикой, рассчитанной на разное давление). Для электрических моделей актуальными являются параметры напряжения, некоторые из них подключаются к сети 220 В, более мощные – 380 вольт. Остальное относится к разряду «практично/непрактично».


Ручные прессы не нуждаются в электропитании, накачка производится за счёт мускульной силы.

Для небольших объёмов работ хорошо подойдёт ручной опрессовщик системы отопления с гидравлическим цилиндром. Более удобным и эффективным является электрическое устройство, которое нагнетает давление поршневым насосом. Электрические опрессовщики позволяют быстрее накачать необходимое давление при меньших трудозатратах. Помимо манометра, они снабжаются различными управляющими/контрольными блоками, которыми иногда можно доукомплектовывать оборудование, приобретённое в базовой комплектации.

Важно! В частных коттеджах, где система рассчитана на 2 атмосферы, чтобы сделать опрессовку, может быть достаточно давления водопроводной сети. Для испытания достаточно просто заполнить контур водой и отслеживать показания манометра.

Сколько стоит провести гидравлические испытания

Опрессовка отопления своими руками – не лучшее решение. Всё-таки для таких архиважных мероприятий лучше нанять лицензированную подрядную организацию, которая берёт ответственность за результаты своего труда. Цена будет зависеть от объёма работ, состояния системы, а также необходимости выполнить дополнительные операции (промывки, замену измерительных приборов, устранение течей). Ориентировочно, испытание на прочность и плотность для многоквартирного дома обойдётся в 30000 рублей, коттеджа – 15000, квартиры – от 5 тысяч.

В акт испытаний обязательно вносится время, которое система находилась под пробным давлением и его уровень

Заказчик получает на руки договор, а также локальную смету на опрессовку системы отопления. Он может рассчитывать на то, что все работы выполняются опытными работниками согласно техническому заданию, а результаты будут зафиксированы в корректно составленном акте.

Видео: что такое опрессовка системы отопления

Http-equiv="Content-Type" />

Методы испытания на герметичность 2

Способ индикаторной краски находит применение для контроля тех Объектов, которые уже в процессе изготовления заправляют рабочей средой, окрашивают и сушат, а затем отправляют заказчику. В этом случае осуществляют во время сушки. В краску, которая служит лакокрасочным покрытием, добавляют специальный индикатор, например бромфеноловый синий, реагирующий на рабочую среду. В местах утечек рабочая среда вступает в химическую реакцию с индикатором. В результате на краске образуются синие пятна, указывающие на место течи. Один из способов приготовления индикаторной краски - создание смеси нетроглифталевой серой краски с бромфеноловым синим индикатором. Индикаторная краска сохраняет свои реакционные свойства в течение длительного времени, так как она реагирует на утечку рабочей среды и после ее высыхания.

Чувствительность контроля способом индикаторной краски достигает 1 10-6...10-7 м3 Па/с.

Манометрический метод часто применяют на практике, так как это один из самых доступных в реализации методов. Он основан на регистрации изменения общего давления в ОК или во вспомогательной камере, в которой размещается ОК.
В последние годы в связи с развитием техники контроля малых изменений давления и температуры возможности метода расширились. На практике обычно контролируют падение (повышение) давления за определенное время. Допустимое изменение давления газовой среды в объекте устанавливают на основе определенных конструктором норм герметичности.
Метод контроля по изменению давления (манометрический) находит применение, главным образом, при предварительных испытаниях объектов с целью выявления сравнительно крупных сквозных дефектов. Самостоятельно этот метод применяют при контроле герметичности, когда требования к порогу чувствительности не превышают 1 10-5 м3 Па/с. При контроле объектов малого объема (V £ l 10-4 м3) может быть достигнут порог чувствительности 5 10-6 м3 Па/с. /
В зависимости от требований к степени герметичности изделий, их габаритов, конфигурации и целей контроля используют бескамерный или камерный (рис. 10.20) способы манометрического контроля.
Математическая модель нестационарного процесса изменения давления в манометрической взаимосвязанной системе имеет вид
(10.15)
где А2 - постоянный коэффициент, зависит от параметров среды и дефекта. В плоскости Р, t динамические характеристики, полученные на основе (10.15), имеют вид парабол (рис. 10.21). Чем больше дефект, тем быстрее выравнивается давление в изделии Р и и в камере Р к в момент времени t *.
На рисунке различные кривые, обозначенные соответствующими знаками (□, Δ и т.д.), характеризуют изменение давления в объекте и в камере при наличии в стенке объекта дефекта определенного диаметра (например, 50, 100 мкм и т.д.). Для бескамерной схемы контроля, когда, предельным переходом получают математическую модель такой системы в виде
(10.16)
Второе уравнение этой системы показывает, что Р к - величина постоянная, т.е. Р к = Рк0 = Р а, где Р а - атмосферное давление.
Подставляя это значение Р к в первое уравнение (10.16), получим дифференциальное уравнение
(10.17)
из которого интегрированием находим
(10.18)
Графики переходного процесса для рассмотренных условий контроля показаны на рис. 10.22. Крутизна этих характеристик в значительной мере определяется размером дефекта.
При бескамерном варианте (см. рис. 10.20, а) в ОК. создают избыточное давление Ри0, при помощи подачи на вход испытателыной системы давления Р0. Затем клапан 3 закрывают. При наличии течи в ОК 1 датчик утечки 2 регистрирует падение давления Ри в соответствии с динамическими характеристиками, приведенными на рис. 10.22.
Для камерной схемы контроля решения дифференциальных уравнений (10.15) имеют вид
(10.19)
(10.20)

Каждое из уравнений (10.19) и (10.20) определяет в координатах Р, t параболу. Оси этих парабол параллельны оси ординат Р и направлены в противоположные стороны. Они пересекаются в точке, координаты которой определяются, решая уравнение
Ри (t ) = Рк(t )
Несмотря на кажущуюся простоту метода, использование его часто сдерживается по причине сравнительно низкой чувствительности метода, а в ряде случаев большой длительностью цикла измерений. При усовершенствовании метода устранению влияния температуры на результаты контроля принадлежит ведущая роль.
Газогидравлический метод (пузырьковый метод) основан на наблюдении пузырьков пробного газа 4 (рис. 10.23), выделяемых из течи 3 при опрессовке газом объекта контроля 2, погруженного в жидкость.
Преимущества пузырькового метода заключаются в его простоте: он не требует приборного оснащения и специальных пробных газов, имеет высокую чувствительность, операции выявления и локализации течей совмещены.
Его недостатком является необходимость погружения изделия в резервуар, что невозможно для крупногабаритных изделий. Покрытие поверхности жидкой пленкой -трудоемкая операция, имеется опасность коррозии поверхности в результате длительного действия на нее остатков жидкости (воды). Чувствительность метода иногда оказывается недостаточной. Результаты проверки в большой степени зависят от добросовестности контролера.
На примере пузырькового метода удобно проследить влияние порога чувствительности средства течеискания и условий испытания на порог чувствительности способа течеискания в целом. Средством обнаружения течи собственно являются пузырьки пробного газа. Рассмотрим процесс образования пузырька для оценки порога чувствительности. Под влиянием давления опрессовки, создаваемого в объекте контроля, в устье течи образуется пузырек. Количество газа в нем определяется произведением объема пузырька V п на давление внутри него Р п. Это давление меньше Р опр из-за падения давлений на течи. Определим Рп из условия равенства его сумме внешних давлений, действующих на пузырек: атмосферного давления на поверхность жидкости Р атм, гидростатического давления жидкости Р г и поверхностного натяжения Р н.
Величина P г=g ρh , где ρ - плотность жидкости, a h - высота столба жидкости над пузырьком. Давление, вызываемое силами поверхностного натяжения, Р н= (2Fжгcosθ)/r=4Fжг/D. Здесь Fжг - сила поверхностного натяжения жидкость - газ, отнесенная к единице длины на поверхности жидкости. Для рассматриваемого случая D = 2r - диаметр пузырька, θ = 0. Таким образом,
(10.21)
где t - время образования пузырька.
Поток газа через течь увеличивает диаметр пузырька вплоть до момента его отрыва. Этот момент наступает, когда действующая на пузырек архимедова сила gρV п становится равной, а затем превышает силы сцепления пузырька с поверхностью, равные силе поверхностного натяжения жидкость - газ, умноженной на периметр течи: Fжг=πd , где d - диаметр течи. Таким образом, условие отрыва

Здесь D 0 - диаметр пузырька в момент отрыва. Из формулы видно, что чем больше диаметр течи, тем крупнее пузырьки. Однако поскольку из диаметра течи (d ) и величин, характеризующих свойства жидкости (F жг и ρ), извлекается корень кубический, диаметр отрывающегося пузырька меняется мало при изменении названных величин. Обычно диаметр отрывающегося пузырька принимают равным 0,5...1 мм. Пузырьки диаметром меньше 0,5 мм трудно заметить. Отсюда можно найти минимальный диаметр течи d min=2,8 мкм.
Минимальный поток газа, регистрируемый пузырьковым метод дом, можно найти из предположения, что время t 0 от начала образования пузырька до его отрыва равно 30 с. Если это время больше, то слишком редко образующиеся пузырьки трудно заметить.
Обычно гидростатическое давление гораздо меньше атмосферного оно даже стремится к нулю при уменьшении расстояния от течи до поверхности h . Давление сил поверхностного натяжения также существенно меньше атмосферного. В результате из (10.31) определяем минимально регистрируемый поток газа, с помощью пузырькового метода:
(10.22)
При D 0=0,5 мм, t 0 = 30 с, Р атм=101325 Па получим J min = (3,14 0,53 10-9 101325)/(6 30)=2,2 10-7 Вт. Это значение определяет, порог чувствительности пузырькового способа как средства течеискания. Теперь рассмотрим чувствительность (нижний предел индикации) всей системы течеискания пузырьковым методом.
Используя уравнения для натекания через канал - течь для вязкого течения J в = πd 4Р 2атм/256ηвl , определим чувствительность всей системы течеискания В min, приведенную к стандартным условиям:
(10.23)
По этой формуле легко рассчитать чувствительность системы при опрессовке воздухом в зависимости от давления опрессовки.


P опр/P атм

B min, Вт

Чувствительность метода к течам может быть повышена не только повышением Р опр, но также применением газов с вязкостью, меньшей, чем у воздуха. Например, если применять водород вместо воздуха, то η/ηв = 0,5 и Ропр/Ратм=10, отсюда B min = 1,1 10-9Вт. Это надо понимать так, что с помощью водорода и давления опрессовки в 10 атм снимают порог чувствительности системы контроля и выявляют течи, которые при вакуумных испытаниях в стандартных условиях будут давать натекание около 1 10-9 Вт.
Рассмотрим некоторые варианты пузырькового метода. Как отмечалось ранее, вместо погружения объекта контроля в резервуар его покрывают жидкой пленкой (способ обмыливания), в которой наблюдают образование пузырьков. Жидкость должна быть вязкой, медленно стекающей, с малым поверхностным напряжением. Ее приготовляют из водного раствора мыла, глицерина и желатина (мыльная пленка) или из водного раствора декстрина, глицерина, спирта и других добавок (полимерная пленка). Вязкость обеспечивает медленное стекание, а снижение сил поверхностного натяжения облегчает образование пузырей.
Пленку наносят на поверхность изделия мягкой кистью или распылителем. Наблюдение за образованием пузырьков начинают через 2...3 мин после нанесения мыльной пленки. При использовании полимерной пленки выявление больших дефектов наблюдают непосредственно после нанесения пленки, а малых - через 20 мин. Пузырьки в такой пленке не лопаются, а сохраняются в виде «коконов» в течение суток. Чувствительность определяют по приближенной формуле (10.22).
Наибольшей чувствительности пузырькового метода удается добиться, если использовать способ обмыливания и наблюдения в локальной вакуумной камере с давлением около 104 Па. Такая камера (рис. 10.24) «присасывается» к поверхности объекта контроля под действием атмосферного давления. Наблюдение за появлением пузырьков, коконов или разрывов пленки ведут через смотровое окно. В этом случае атмосферное и гидростатическое давления равны нулю, и формула (10.22) с учетом двойной поверхности соприкосновения пленки с газом приобретает вид

Рис. 10.24. Локальная вакуумная камера :
1 - корпус. 2 - стекло, 3 - штуцер откачки, 4 - уплотнение,
5 - стенка объекта контроля, 6 - штуцер манометра.

Принимая прежние условия испытания и величину поверхностного натяжения для воды 0,075 Н/м, получим J min=l,3 10-9 Вт, т.е. порог чувствительного метода как средства течеискания снижается в 170 раз по сравнению с испытанием в резервуаре с атмосферным давлением. При этом сохраняется отмеченная выше возможность повышения чувствительности способа контроля в целом за счет повышения давления опрессовки и применения водорода в качестве пробного газа вместо воздуха. В результате пузырьковый метод позволит выявить течи, которые при вакуумных испытаниях в стандартных условиях будут соответствовать натеканию около 10-11 Вт.
Пузырьковый метод применяют также для испытания замкнутых объектов контроля, содержащих газ под атмосферным давлением. Избыточное давление газа внутри объекта контроля создают, погружая объект в горячую жидкость. Изменение давления при этом определяют из закона Шарля

где Р - давление; Т -абсолютная температура; индексы «1» и «2» относятся к холодному и нагретому объекту.
B качестве исходных условий примем нормальные. Температура нагрева Т 2 ограничивается тем, что в жидкости начинают образовываться пузырьки. Для воды это 80°С. Отсюда легко найти, что

Подставляя это значение в (10.23), найдем, что чувствительность метода, приведенная к стандартным условиям, равна 33 10-6 Вт.
Возможности повышения чувствительности заключаются в применении жидкостей с высокой температурой кипения. Например, вакуумное масло имеет температуру образования пузырьков 150°С. Это дает возможность увеличить Ропр/Ратм до 1,55. Кроме того, испытания проводят в вакуумной камере со смотровым окном. В результате обеспечивают выявление течей с пороговой чувствительностью примерно 10-8 Вт.
Гидравлические методы. Процесс гидроиспытаний, которому подвергают многие изделия, можно использовать как способ течеискания. Контроль на обнаружение больших течей называют испытанием на непроницаемость. Таким испытаниям подвергают корпуса судов, гидроемкости.
Испытания проводят либо при статическом давлении столба воды высотой 0,5...2,5 м с выдержкой не менее 1 ч, либо струей воды под напором. Менее ответственные объекты контролируют, водой без напора или рассеянной, струей воды. Результаты считают удовлетворительными, если не наблюдают струй, потоков, непрерывно стекающих капель воды.
Сосуды, корпуса, трубные системы и другие объекты, которые должны выдерживать значительные давления, подвергают гидроиспытаниям опрессовкой давлением значительно выше рабочего. Этот процесс также используют для поиска течей, причем признаком течи может быть отпотевание стенки объекта.
Для облегчения поиска течей и понижения порога чувствительности метода делают пробную жидкость контрастной, например придают ей свойство люминесцировать. Наибольшее распространение получил люминесцентно-гидравлический метод. Он состоит в том, что в воду, предназначенную для опрессовки, вводят в пропорции 0,1% (1 л/г) концентрированный раствор динатриевой соли флуоресцина (уранина). Состав тщательно перемешивают. Длительность выдержки под давлением - от 15 мин до 1 ч (в зависимости от толщины стенок объекта контроля).
Затем каждый контролируемый участок, поверхности ОК подвергают осмотру в лучах ультрафиолетового света ртутно-кварцевой лампы. Сначала выявляют большие течи, при прохождении, через которые вода из раствора флюоресцина полностью не испаряется и обеспечивает достаточную люминесценцию. Затем поверхность увлажняют влагораспылителем и опять осматривают. Флюоресцин, прошедший через мелкие течи, растворяется в этой воде и начинает светиться. В ультрафиолетовых лучах сквозные дефекты выявляются как светящиеся зеленые точки (поры), полоски (трещины). Освещенность помещения видимым светом должна быть не больше 20 лк.
Порог чувствительности люминесцентно-гидравлического метода, как и для всех жидкостных методов, определяют эмпирически, путем сравнения с результатами контроля газовыми способами. При избыточном давлении не менее 2 107 Па люминесцентно-гидравлическим методом обнаруживают дефекты, которые при контроле газовыми методами соответствуют натеканию 10-10...10-9 Вт в стандартных условиях. При снижении давления до 2 105 Па выявляют течи 10-5...10-4 Вт.
Если гидроопрессовка изделия не предусмотрена технологией или создание разности давлений невозможно из-за низкой прочности стенок изделия, для обнаружения течей применяют капиллярный (обычно люминесцентный) способ. Он отличается от рассмотренного в гл. 2 тем, что пенетрант и проявитель наносят на разные стороны поверхности перегородки. Проникающую жидкость (нориол с керосином) наносят кистью обильным слоем и через каждые 20 мин добавляют некоторое количество пенетранта. Проявитель (спиртоводную суспензию каолина) наносят тонким слоем на противоположную поверхность. Поиск дефектов путем осмотра при ультрафиолетовом освещении начинают не ранее чем через 10 мин после нанесения пенетранта и проявителя. Общее время выдержки зависит от толщины стенок изделия и требований к изделию по герметичности, оно может достигать 14 ч. Длительное время выдержки - главный недостаток капиллярного метода течеискания.
Менее ответственные объекты контролируют методом керосиновой пробы. С одной стороны на поверхность перегородки наносят керосин (пенетрант), а с другой - проявляющее покрытие в виде раствора мела в воде. Выдержка составляет от 40 до 120 мин в зависимости от толщины перегородки и ее расположения. Места течей определяют по появлению темных пятен керосина на меловом покрытии.
Средства и устройства, обеспечивающие процесс течеискания. Для выполнения контроля методами течеискания необходимы следующие средства: пробное вещество, устройства для создания и измерения разности давлений, средства обнаружения пробного вещества или измерения его количества, а также средства и технология подготовки объекта к контролю. Эффективность контроля течеисканием зависит от всей системы контроля, т.е. сочетания определенного способа, средства, режима контроля и способа подготовки объекта к контролю. Пороговую чувствительность системы контроля определяют значением минимального натекания в стандартных условиях, которое можно обнаружить этой системой.
Чем выше чувствительность системы контроля, тем ниже порог чувствительности.
Пробные вещества должны хорошо проникать через течи и хорошо обнаруживаться средствами течеискания. Они должны быть недорогими, не оказывать вредного действия на людей и объект контроля.
В качестве пробных веществ применяют газы (чаще) и жидкости. Чем меньше вязкость и молекулярный вес газа, тем лучше он проникает через течи. Главное требование к пробным газам (как и ко всем пробным веществам) - существование высокочувствительных методов их обнаружения. Наиболее распространенные пробные газы указаны в табл. 10.2.
В некоторых случаях в качестве пробных веществ применяют легколетучие жидкости: спирт, ацетон, бензин, эфир. Обычно индикаторы улавливают пары этих жидкостей, а способы контроля такими жидкостями относят к газовым.
К жидким пробным веществам относят воду, применяемую при гидроиспытаниях (гидроопрессовке), воду с люминесцирующими добавками, облегчающими индикацию течей, смачивающие жидкости - пенетраты.
Средства для создания разности давлений включают жидкостные или газовые (компрессоры), насосы, вакуумные насосы, баллоны с пробными газом или жидкостью, трубопроводы, арматуру (клапаны, штуцера, патрубки), манометры и т.д.
При вакуумных испытаниях остаточное давление воздуха составляет 0,1...1 Па. Такое давление достигают с помощью механического форвакуумного насоса. Более глубокий вакуум (10-4...10-5 Па) достигают с помощью паромасляных насосов . Однако эти насосы не могут откачивать воздух в атмосферу. Для них наибольшее выпускное давление 10...500 Па, которое обеспечивают форвакуумным насосом. Чтобы масло паромасляных насосов не попадало в вакуумную систему, между ними ставят отражатели и ловушки, охлаждаемые водой или жидким воздухом, заполненные сорбирующими веществами. В этом случае достигают вакуум в 10-6...10-7 Па.
Важной характеристикой насоса является быстрота действия: объем откачиваемого газа при определенном давлении на входном патрубке насоса. Часто используют понятие эффективной быстроты откачки Sэ. Оно определяет объем откачиваемого насосом газа с учетом ограниченной проводимости патрубков и вентилей, соединяющих насос с откачиваемым объемом.
При опрессовке газом давление должно быть ниже допустимого расчетного для данного объекта. Обычно применяют давление опрессовки не более 2 105.Па (около 1 атм) и только в отдельных случаях до 5 106 Па. Ограничение связано с катастрофическими последствиями от разрыва объекта контроля, опрессовываемого газом.
При гидроопрессовке разрыв объекта значительно менее опасен, поскольку жидкости практически несжимаемы. В этом случае возможно применение значительно: больших давлений. Например, гидроиспытания на прочность объекта контроля обычно проводят при давлениях, на 25...50% превышающих расчетное. Если паровой котел предназначен для работы под давлением 3 107 Па (300 атм), то давление при гидроиспытаниях доводят до 3,75 107 Па и при этом же давлении проводят контроль люминесцентно-гидравлическим методом.
При гидроопрессовке важно, чтобы не возникали «воздушные, подушки». Поэтому объект контроля перед заполнением жидкостью откачивают или выпускают сжимаемый воздух через вентиль, который располагают в верхней части объекта.
Манометры служат для измерения давления. Давление выше 104 Па измеряют с помощью механических деформационных, пьезоэлектрических и других типов манометров. Меньшие давления измеряют с помощью термоэлектрических, ионизационных и других вакуумных манометров (вакуумметров). Градуировку этих манометров выполняют с помощью жидкостного и компрессионного манометров. Каждый тип манометра имеет предел измерений, определяемый принципом его действия. Например, предварительный вакуум измеряют тепловым манометром, а высокий - ионизационным манометром.
Средства обнаружения течей. Для обнаружения течей используют специальные приборы - течеискатели и неприборные способы течеискания. Важнейшая характеристика средства обнаружения течей порог чувствительности. Это наименьший регистрируемый течеискателем поток газообразного или расхода жидкого пробного вещества. Путем экспериментов и расчетов его преобразуют к натеканию в стандартных условиях. Средства обнаружения течей характеризуют также диапазоном давлений, при которых они работают, временем подготовки к работе и испытаний, возможностью количественных отсчетов, массой и т.д.
В табл. 10.2 перечислены различные методы обнаружения, течей по применяемому средству течеискания, указан принцип, на котором они основаны. Методы расположены по мере увеличения порога чувствительности, т.е. ухудшения возможности выявления небольших течей. Указан ориентировочный порог чувствительности системы контроля по потоку воздуха в стандартных условиях, который зависит не только от средства течеискания, но и от спо­соба применения этого средства. Например, применение масс-спектрометрического метода с накоплением дает наиболее низкий порог чувствительности, а в динамическом режиме он в 100 раз выше.
Подготовка объектов к контролю. Главная задача подготовки к контролю состоит в освобождении течей от закрывающих их веществ масел, эмульсий, сконденсированной влаги из окружающего воздуха. При испытаниях опрессовкой под высоким избыточным давлением закупоривающие вещества вытесняются из течей, поэтому к подготовке поверхности не предъявляют высоких требований. При контроле смачивающими жидкостями подготовка поверхности с обеих сторон изделия такая же, как в капиллярном методе. Наиболее важна подготовка поверхности при испытаниях газовым методом с небольшой разностью давлений, например при вакуумных испытаниях.
Защитные покрытия поверхности (окраска) мешают контролю, поэтому герметичность проверяют до их нанесения. Масло, эмульсию удаляют протиркой растворителями. Для вскрытия течей (а также обезгаживания) проводят термическую обработку поверхности, которую разделяют на несколько классов.
Для полного вскрытия течей (первый класс) объект контроля прогревают в вакууме. Оптимальным является нагрев до температуры 400°С при вакууме 0,1 Па с выдержкой от 5 мин до 3 ч в зависимости от объекта контроля. Нагрев до высокой температуры нужен потому, что кипение жидкости в капиллярах происходит при более высокой температуре, чем в нормальных условиях. Например, вода кипит при температуре 300...400°С. Если нагрев до такой высокой температуры невозможен, то можно нагревать изделие на воздухе до температуры 250...300°С с выдержкой как минимум 30 мин.
Второй класс подготовки - нагрев на воздухе до 150...200°С с выдержкой как минимум 10 мин или в вакууме (10 Па) -до 100...200°С с выдержкой не менее 1ч.
Третий класс Подготовки - такой же нагрев на воздухе или в вакууме до 80°С с выдержкой не менее 2 ч. Наконец, четвертый класс предусматривает только сушку поверхности.
Перспективные методы. Анализ тенденций развития методов и способов контроля герметичности выявил перспективные направления в технике течеискания, развивающиеся в настоящее время.
Прежде всего перспективы течеискания связаны с расширением аппаратурной реализацией методов контроля. Так, успехи в абсорбционной спектроскопии газов с использованием для обнаружения микропримесей в окружающем воздухе монохроматического излучения в сочетании с оптико-акустическим эффектом позволили по-новому подойти к решению задачи повышения достоверности и эффективности контроля герметичности тонкостенных замкнутых объемов. На этой основе созданы первые образцы оптико-абсорбционной течеискательной аппаратуры с использованием закиси азота как пробного вещества.
Широкое развитие получают перспективные физико-химические методы контроля герметичности, основанные на эффекте взаимодействия пробного газа с поверхностью дефекта или специальным составом, и способствующие повышению проводимости дефекта. На основе этих же методов создаются новые типы чувствительных датчиков утечки, например пьезовзвешенные, которые используют специальное покрытие на поверхности кварца, взаимодействующего с пробным газом.
Кроме рассмотренных выше течеискательных устройств которые серийно выпускаются приборостроительными предприятиями, создан ряд устройств, используемых на отдельных предприятиях для испытания конкретных видов изделий. К ним относятся манометрические, акустические, инфракрасные, лазерные и другие течеискательные устройства и системы.
Манометрические течеискательные устройства обычно выполняют на базе серийных мембранных элементов и блоков. Наиболее часто такие устройства базируются на высокочувствительных мембранных или сильфонных дифманометрах. Основной поиск в направлении усиления возможностей манометрических устройств контроля герметичности связывается с подбором мембраны, созданием, температурных компенсаторов и компьютеризацией процесса манометрических испытаний.
Акустические течеискатели, основанные на регистрации ультразвуковых колебаний газовой струи, вытекающей через сквозной дефект, не получили ожидаемого распространения из-за их низкой чувствительности и влияния посторонних шумов на воспроизводимость испытаний. Как правило, акустические течеискатели (например, типа ТУЗ) позволяют находить течи с условным диаметром 0,1...0,15 мм при избыточном давлении внутри изделий 0,04...0,05 МПа. Область применения при сегодняшнем уровне их развития будет ограничиваться простыми условиями их эксплуатации, невысокими требованиями к степени герметичности промышленной продукции.
Поиск новых пробных веществ и успехи в развитии оптико-абсорбционного газоаналитического метода позволил специалистам авиационной промышленности создать новый тип течеискатели ИГТ-4. Это оптико-абсорбционный течеискатель, основанный на индикации экологически чистого пробного газа - закиси азота.
Его порог чувствительности к потоку закиси азота составляет 6,5 10-7 м3 Па/с. Течеискатель типа ИГТ-4 прост и надежен в эксплуатации, работает в автоматическом режиме, который осуществляется с помощью встроенного микропроцессора.
Развитие науки и техники в последние годы приводит к появлению новых идей газоаналитической и в том числе течеискательной аппаратуры. Это прежде всего относится к твердотельной полупроводниковой технике измерения параметров газовых потоков и следов газов. Видимо, в ближайшие годы развитие этого направления приведет к созданию новых типов течеискательной аппаратуры.

НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ. Кн. I. Общие вопросы. Контроль проникающими веществами. Гурвич, Ермолов, Сажин.

Чтобы ввести отопление в эксплуатацию, необходимо обязательно выполнить промывку и опрессовку системы. После завершения данной процедуры заполняется акт, подтверждающий, что монтаж отопительной сети сделан правильно. Работники уполномоченные выполнять данную работу обязаны заполнить все надлежащие нормативные акты.

Правила опрессовки СНиП

Нормы опрессовки отопительной системы описаны в таких документах, как СНиП 41–01-2003, а еще 3.05.01–85.

Кондиционирование, вентиляция и отопление - СНиП 41–01-2003

Проводить гидравлические проверки водяных систем отопления можно лишь при плюсовой температуре в помещениях дома. Вдобавок они должны выдерживать давление воды не меньше 0,6 МПа без повреждения герметичности и разрушения.

В процессе испытания величина давления не должна быть выше предельного для смонтированных в системе отопительных устройств, трубопроводов и арматуры.

Внутренние санитарно-технические системы - 3.05.01–85

Согласно этому правилу СНиП надо выполнять проверку водяных систем теплоснабжения и отопления при отключенных расширительных сосудах и котлах путем гидростатического давления , равного 1,5 рабочего, но не меньше 0,2 МПа в нижней части системы.

Считается, что отопительная сеть прошла испытание, если она продержится 5 минут под пробным давлением и не упадет более чем на 0,02 МПа. Кроме того, не должно быть течи в отопительном оборудовании, сварных швах, арматуре, резьбовых соединениях и трубах.

Условия выполнения опрессовки

Испытательные работы являются правильно осуществленными, если соблюдались все необходимые требования. Например, на испытуемом объекте проводить сторонние работы нельзя, а опробованием должен руководить обязательно начальник смены.

Опрессовку осуществляют лишь по программе, одобренной главным инженером компании. В ней определяют: порядок действий сотрудников и технологическую последовательность проверки . Еще излагают меры безопасности выполняемых и текущих работ, производимых на смежных объектах.

Посторонних людей во время опрессовки системы отопления, включение или отключение испытательных устройств быть не должно, на месте остаются только сотрудники, принимающие участие в проверке.

Когда работы проводятся на смежных участках обязательно надо предусматривать надежное ограждение и отключение испытательного оборудования.

Осмотр отопительных приборов и труб разрешается выполнять лишь при рабочих величинах давления. Когда будет выполнена опрессовка системы отопления, акты заполняют, чтобы подтвердить герметичность.

Процедура опрессовки

Этот способ проверки системы отопления предполагает осуществление гидравлических испытаний:

  • Теплообменников;
  • Бойлеров;
  • Труб.

Тем самым удается выявить протечки, которые указывают на разгерметизацию сети.

Прежде чем испытывать отопительную систему заглушками, следует изолировать систему теплоснабжения от водоснабжения, визуально оценить надежность всех соединений , а также проверить работоспособность и состояние запорной арматуры.

После этого отключаются расширительный бак и котел для промывки радиаторов, трубопроводов от разных отложений, мусора и пыли.

В процессе гидравлической проверки систему отопления заполняют водой, но при выполнении воздушных испытаний этого не делают, а просто подключают к сливному крану компрессор. Затем повышают давление до необходимой величины, и манометром следят за его показателями. Если отсутствуют изменения, то герметичность хорошая, следовательно, систему можно вводить в эксплуатацию.

Когда давление начинает снижаться сверх допустимой величины, значит, присутствуют дефекты . Протечки в заполненной системе найти совсем несложно. А вот, чтобы выявить повреждения во время испытания воздухом, следует на все соединения и стыки нанести мыльный раствор.

На выполнение воздушной опрессовки уходит не менее 20 часов, а на гидравлическое испытание - 1 час.

Исправив выявленные дефекты, процедуру повторяют заново, причем делать это приходится, пока не будет достигнута хорошая герметичность . После проведения этих работ заполняют акты опрессовки систем отопления .

Проверка отопительной сети воздухом, как правило, осуществляется, если невозможно заполнить ее водой, или при проведении работ в условиях низких температур, ведь жидкость просто может замерзнуть.

Акт опрессовки системы отопления

В этом документе отображают следующую информацию:

  • Какой именно использован метод опрессовки;
  • Проект, в соответствии с которым произведена установка контура;
  • Дата выполнения проверки, адрес ее проведения, а также фамилии граждан, которые подписывают акт. В основном это собственник дома, представители ремонтно-обслуживающей организации и теплосетей;
  • Как устранялись выявленные неисправности;
  • Результаты проверки;
  • Присутствуют ли признаки нарушения герметичности или надежности резьбовых и сварных соединений. Кроме этого, указывается, есть ли на поверхности арматуры и труб капли.

Допустимое испытательное давление при опрессовке водяного отопления

Многих застройщиков интересует, под каким давлением нужно выполнять проверку отопительной системы. В соответствии с требованиями СНиП, представленными выше, при опрессовке допускается давление выше рабочего в 1,5 раза , но быть меньше 0,6 МПа не должно.

Имеется и другая цифра, указанная в «Правилах технической эксплуатации тепловых энергоустановок». Конечно, данный метод «мягче», в нем давление превосходит рабочее в 1,25 раза.

В частных домах, оборудованных автономным отоплением, оно не поднимается выше 2 атмосфер, да и настраивается искусственно: если появляется избыточное давление , то сразу включается сбросной клапан. Тогда как в общественных и многоквартирных строениях рабочее давление намного больше этих значений: пятиэтажные сооружения - около 3-6 атмосфер, а высокие здания - примерно 7-10.

Оборудование для испытания системы отопления

Чаще всего для выполнения гидравлической проверки используют опрессовщик. Его подключают к контуру, чтобы регулировать давление в трубах.

Огромное количество локальных сетей отопления в частных строениях не нуждается в высоком давлении, поэтому достаточно будет ручного опрессовщика . В остальных случаях лучше пользоваться электрическим насосом.