23.07.2023

Что называется коллектором биполярного транзистора. Схемы включения биполярных транзисторов. Поиск ошибок в транзисторных схемах


В зависимости от принципа действия и конструктивных признаков транзисторы подразделяются на два больших класса: биполярные и полевые .

Биполярный транзистор - это полупроводниковый прибор с двумя взаимодействующими между собой р-п-переходами и тремя или более выводами.

Полупроводниковый кристалл транзистора состоит из трех областей с чередующимися типами электропроводности, между которыми находятся два р-п -перехода. Средняя область обычно выполняется очень тонкой (доли микрона), поэтому р-п -переходы близко расположены один от другого.

В зависимости от порядка чередования областей полупроводника с различными типами электропроводности различают транзисторы р-п-р и п-р-п- типов. Упрощенные структуры и УГО разных типов транзисторов показаны на рисунке 1.23, а , б .

Рисунок 1.23 - Структура и УГО биполярных транзисторов

Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором. В качестве основного материала для изготовления биполярных транзисторов в настоящее время используется кремний. При этом преимущественно изготовляют транзисторы п-р-п -типа, в которых основными носителями заряда являются электроны, имеющие подвижность в два-три раза выше, чем подвижность дырок.

Управление величиной протекающего в выходной цепи (в цепи коллектора или эмиттера) биполярного транзистора тока осуществляется с помощью тока в цепи управляющего электрода - базы . Базой называется средний слой в структуре транзистора. Крайние слои называются эмиттер (испускать, извергать) и коллектор (собирать). Концентрация примесей (а, следовательно, и основных носителей зарядов) в эмиттере существенно больше, чем в базе и больше, чем в коллекторе. Поэтому эмиттерная область самая низкоомная .

Для иллюстрации физических процессов в транзисторе воспользуемся упрощенной структурой транзистора п-р-п- типа, приведенной на рисунке 1.24. Для понимания принципа работы транзистора исключительно важно учитывать, что р-п -переходы транзистора сильно взаимодействуют друг с другом. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот.

В активном режиме (когда транзистор работает как усилительный элемент) к транзистору подключают два источника питания таким образом, чтобы эмиттерный переход был смещен в прямом направлении , а коллекторный - в обратном (рисунок 1.24). Под действием электрического поля источника Е БЭ через эмиттерный переход течет достаточно большой прямой ток I Э, который обеспечивается, главным образом, инжекцией электронов из эмиттера в базу Инжекция дырок из базы в эмиттер будет незначительной вследствие указанного выше различия в концентрациях атомов примесей.



Рисунок 1.24 - Физические процессы в биполярном транзисторе

Поток электронов, обеспечивающий ток I Э через переход эмиттер - база показан на рисунке 1.24 широкой стрелкой. Часть инжектированных в область базы электронов (1 … 5%) рекомбинируют с основными для этой области носителями заряда - дырками, образуя во внешней цепи базы ток I Б. Вследствие большой разности концентраций основных носителей зарядов в эмиттере и базе, нескомпенсированные инжектированные в базу электроны движутся в глубь ее по направлению к коллектору .

Вблизи коллекторного р-п- перехода электроны попадают под действие ускоряющего электрического поля этого обратносмещенного перехода. А поскольку в базе они являются неосновными носителями, то происходит втягивание (экстракция ) электронов в область коллектора. В коллекторе электроны становятся основными носителями зарядов и легко доходят до коллекторного вывода, создавая ток во внешней цепи транзистора.

Таким образом, ток через базовый вывод транзистора определяют две встречно направленные составляющие тока . Если бы в базе процессы рекомбинации отсутствовали, то эти токи были бы равны между собой, а результирующий ток базы был бы равен нулю. Но так как процессы рекомбинации имеются в любом реальном транзисторе, то ток эмиттерного p-n -перехода несколько больше тока коллекторного p-n -перехода.

Для тока коллектора можно записать следующее равенство

, (1.9)

где a ст - статический коэффициент передачи тока эмиттера;

I КБО - обратный ток коллекторного перехода (тепловой ток) (у транзисторов малой мощности при нормальной температуре составляет 0, 015 ... 1 мкА).

На практике статический коэффициент передачи тока эмиттера a ст , взависимости от типа транзистора, может принимать значения в диапазоне 0,95 … 0,998.

Ток эмиттера в транзисторе численно является самым большим и равен

, (1.11)

где - статический коэффициент передачи тока базы в схеме с общим эмиттером (в справочной литературе используется обозначение h 21Э , обычно принимает значение b ст = 20 … 1000 в зависимости от типа и мощности транзистора).

Из ранее сказанного следует, что транзистор представляет собой управляемый элемент, поскольку значение его коллекторного (выходного) тока зависит от значений токов эмиттера и базы.

Заканчивая рассмотрение принципа работы биполярного транзистора, следует отметить, что сопротивление обратносмещенного коллекторного перехода (при подаче на него обратного напряжения) очень велико (сотни килоом). Поэтому в цепь коллектора можно включать нагрузочные резисторы с весьма большими сопротивлениями , тем самым практически не изменяя значения коллекторного тока. Соответственно в цепи нагрузки будет выделяться значительная мощность.

Сопротивление прямосмещенного эмиттерного перехода, напротив, весьма мало (десятки - сотни Ом). Поэтому при почти одинаковых значениях эмиттерного и коллекторного токов мощность, потребляемая в цепи эмиттера, оказывается существенно меньше мощности, выделяемой в цепи нагрузки. Это указывает на то, что транзистор является полупроводниковым прибором, усиливающим мощность .

Технология изготовления биполярных транзисторов может быть различной: сплавление , диффузия , эпитаксия . Это в значительной мере определяет характеристики прибора. Типовые структуры биполярных транзисторов, изготовленных различными методами, приведены на рисунке 1.25. В частности, на рисунке 1.25, а показана структура сплавного , на рисунке 1.25, б - эпитаксиально -диффузионного , на рисунке 1.25, в - планарного , на рисунке 1.25, г - мезапланарного транзисторов .


Рисунок 1.25 - Способы изготовления биполярных транзисторов

Режимы работы и схемы включения транзистора

На каждый р-п- переход транзистора может быть подано как прямое, так и обратное напряжение. В соответствии с этим различают четыре режима работы биполярного транзистора: режим отсечки , режим насыщения , активный режим и инверсный режим.

Активный режим обеспечивается подачей на эмиттерный переход прямого напряжения, а на коллекторный - обратного (основной режим работы транзистора). Этот режим соответствует максимальному значению коэффициента передачи тока эмиттера и обеспечивает минимальное искажение усиливаемого сигнала.

В инверсном режиме к коллекторному переходу приложено прямое напряжение, к эмиттерному - обратное (a ст ® min; используется очень редко).

В режиме насыщения оба перехода находятся под прямым смещением. В этом случае выходной ток не зависит от входного и определяется только параметрами нагрузки.

В режиме отсечки оба перехода смещены в обратных направлениях. Выходной ток близок к нулю.

Режимы насыщения и отсечки используется одновременно в ключевых схемах (при работе транзистора в ключевом режиме).

При использовании транзистора в электронных устройствах нужны два вывода для подачи входного сигнала и два вывода для подключения нагрузки (снятия выходного сигнала). Поскольку у транзистора всего три вывода, один из них должен быть общим для входного и выходного сигналов.

В зависимости от того, какой вывод транзистора является общим при подключении источника сигнала и нагрузки, различают три схемы включения транзистора: с общей базой (ОБ) (рисунок 1.26, а ); с общим эмиттером (ОЭ) (рисунок 1.26, б ); с общим коллектором (ОК) (рисунок 1.26, в ).

В этих схемах источники постоянного напряжения и резисторы обеспечивают режимы работы транзисторов по постоянному току, то есть необходимые значения напряжений и начальных токов. Входные сигналы переменного тока создаются источниками и вх. Они изменяют ток эмиттера (базы) транзистора, а, соответственно, и ток коллектора. Приращения тока коллектора (рисунок 1.26, а , б ) и тока эмиттера (рисунок 1.26, в ) создадут, соответственно, на резисторах R К и R Э приращения напряжений, которые и являются выходными сигналами и вых .


а б в

Рисунок 1.26 - Схемы включения транзистора

При определении схемы включения транзистора необходимо учитывать то, что сопротивление источника постоянного напряжения для переменного тока близко к нулю.

Вольт-амперные характеристики транзистора

Наиболее полно свойства биполярного транзистора описываются с помощью статических вольт-амперных характеристик. При этом различают входные и выходные ВАХ транзистора. Поскольку все три тока (базовый, коллекторный и эмиттерный) в транзисторе тесно взаимосвязаны, при анализе работы транзистора необходимо пользоваться одновременно входными и выходными ВАХ.

Каждой схеме включения транзистора соответствуют свои вольт-амперные характеристики, представляющие собой функциональную зависимость токов через транзистор от приложенных напряжений. Из-за нелинейного характера указанных зависимостей их представляют обычно в графической форме.

Транзистор, как четырехполюсник, характеризуется входными и выходными статическими ВАХ, показывающими соответственно зависимость входного тока от входного напряжения (при постоянном значении выходного напряжения транзистора) и выходного тока от выходного напряжения (при постоянном входном токе транзистора).

На рисунке 1.27 показаны статические ВАХ р-п-р -транзистора, включенного по схеме с ОЭ (наиболее часто применяемой на практике).


а б

Рисунок 1.27 - Статические ВАХ биполярного транзистора, включенного по схеме с ОЭ

Входная ВАХ (рисунок 1.27, а ) подобна прямой ветви ВАХ диода. Она представляет собой зависимость тока I Б от напряжения U БЭ U КЭ , то есть зависимость вида

. (1.12)

Из рисунка 1.27, а видно: чем больше напряжение U КЭ , тем правее смещается ветвь входной ВАХ. Это объясняется тем, что при увеличении обратносмещающего напряжения U КЭ происходит увеличение высоты потенциального барьера коллекторного р -п -перехода. А поскольку в транзисторе коллекторный и эмиттерный р -п -переходы сильно взаимодействуют, то это, в свою очередь, приводит к уменьшению базового тока при неизменном напряжении U БЭ .

Статические ВАХ, представленные на рисунке 1.27, а , сняты при нормальной температуре (20 °С). При повышении температуры эти характеристики будут смещаться влево, а при понижении - вправо. Это связано с тем, что при повышении температуры повышается собственная электропроводность полупроводников.

Для выходной цепи транзистора, включенного по схеме с ОЭ, строится семейство выходных ВАХ (рисунок 1.27, б ). Это обусловлено тем, что коллекторный ток транзистора зависит не только (и не столько, как видно из рисунка) от напряжения, приложенного к коллекторному переходу, но и от тока базы. Таким образом, выходной вольт-амперной характеристикой для схемы с ОЭ называется зависимость тока I К от напряжения U КЭ при фиксированном токе I Б , то есть зависимость вида

. (1.13)

Каждая из выходных ВАХ биполярного транзистора характеризуется в начале резким возрастанием выходного тока I К при возрастании выходного напряжения U КЭ , а затем, по мере дальнейшего увеличения напряжения, незначительным изменением тока.

На выходной ВАХ транзистора можно выделить три области, соответствующие различным режимам работы транзистора: область насыщения , область отсечки и область активной работы (усиления), соответствующая активному состоянию транзистора, когда ½U БЭ ½ > 0 и ½U КЭ ½> 0.

Входные и выходные статические ВАХ транзисторов используют при графо-аналитическом расчете каскадов, содержащих транзисторы.

Статические входные и выходные ВАХ биполярного транзистора р -п -р -типа для схемы включения с ОБ приведены на рисунке 1.28, а и 1.28, б соответственно.


а б

Рисунок 1.28 - Статические ВАХ биполярного транзистора для схемы включения с ОБ

Для схемы с ОБ входной статической ВАХ называют зависимость тока I Э от напряжения U ЭБ при фиксированном значении напряжения U КБ , то есть зависимость вида

. (1.14)

Выходной статической ВАХ для схемы с ОБ называется зависимость тока I К от напряжения U КБ при фиксированном токе I Э , то есть зависимость вида

. (1.15)

На рисунке 1.28, б можно выделить две области, соответствующие двум режимам работы транзистора: активный режим (U КБ < 0 и коллекторный переход смещен в обратном направлении); режим насыщения (U КБ > 0 и коллекторный переход смещен в прямом направлении).

Математическая модель биполярного транзистора

К настоящему времени известно много электрических моделей биполярных транзисторов. В системах автоматизации проектирования (САПР) радиоэлектронных средств наиболее часто используются: модели Эберса-Молла , обобщенная модель управления зарядом Гуммеля-Пуна, модель Линвилла, а также локальные П- и Т-образные модели линейных приращений Джиаколлето.

Рассмотрим, в качестве примера, один из вариантов модели Эберса-Молла (рисунок 1.29), отражающей свойства транзисторной структуры в линейном режиме работы и в режиме отсечки.


Рисунок 1.29 - Схема замещения биполярного транзистора (модель Эберса-Молла)

На рисунке 1.29 использованы обозначения: r э , r б , r к - сопротивления, соответственно, эмиттерной, базовой и коллекторной областей транзистора и контактов к ним; I б , I к - управляемые напряжением и п на входном переходе источники тока, отражающие передачу тока через транзистор; R эб - сопротивление утечки перехода база-эмиттер; R кб - сопротивление утечки перехода база-коллектор. Ток источника I б связан с напряжением на переходе соотношением

, (1.15)

где I БО - ток насыщения перехода база-эмиттер (обратный ток);

y к = (0,3 … 1,2) В - контактная разность потенциалов (зависит от типа полупроводникового материала);

т - эмпирический коэффициент.

Параллельно переходу база-эмиттер включены барьерная емкость С бэ и диффузионная емкость С дэ перехода. Величина С бэ определяется обратным напряжением на переходе и п и зависит от него по закону

, (1.16)

где С 0б - емкость перехода при и п = 0;

g = 0,3 ... 0,5 - коэффициент, зависящий от распределения примесей в области базы транзистора.

Диффузионная емкость является функцией тока I б , протекающего через переход, и определяется выражением

где А - коэффициент, зависящий от свойств перехода и его температуры.

Коллекторно-базовый переход моделируется аналогично, отличие состоит лишь в учете только барьерной емкости перехода

, (1.18)

так как при работе транзистора в линейном режиме и режиме отсечки коллекторного тока этот переход закрыт. Выражение для тока управляемого источника коллекторного тока , моделирующего усилительные свойства транзистора, имеет вид

, (1.19)

где b ст - статический коэффициент передачи тока базы транзистора в схеме с общим эмиттером.

Параметры модели Эберса-Молла могут быть получены либо расчетным путем на основе анализа физико-топологической модели транзистора, либо измерены экспериментально. Наиболее легко определяются статические параметры модели на постоянном токе.

Глобальная электрическая модель дискретного биполярного транзистора, учитывающая индуктивности и емкости его выводов, представлена на рисунке 1.30.

Рисунок 1.30 - Глобальная модель биполярного транзистора

Основные параметры биполярного транзистора

При определении переменных составляющих токов и напряжений (то есть при анализе электрических цепей на переменном токе) и при условии, что транзистор работает в активном режиме, его часто представляют в виде линейного четырехполюсника (рисунок 1.31, а ). Названия (физическая сущность) входных и выходных токов и напряжений такого четырехполюсника зависят от схемы включения транзистора.


а б

Рисунок 1.31 - Представление биполярного транзистора линейным четырехполюсником

Для схемы включения транзистора с общим эмиттером токи и напряжения четырехполюсника (рисунок 1.31, б ) соответствуют следующим токам и напряжениям транзистора:

- i 1 - переменная составляющая тока базы;

- u 1 - переменная составляющая напряжения между базой и эмиттером;

- i 2 - переменная составляющая тока коллектора;

- u 2 - переменная составляющая напряжения между коллектором и эмиттером.

Транзистор удобно описывать, используя так называемые h -параметры. При этом система уравнений четырехполюсника в матричном виде примет вид

. (1.20)

Коэффициенты h ij (то есть h -параметры) определяют опытным путем, используя поочередно режимы короткого замыкания и холостого хода на входе и выходе четырехполюсника.

Сущность h -параметров для схемы включения транзистора с ОЭ следующая:

- - входное сопротивление транзистора для переменного сигнала при коротком замыкании на выходе;

- r б - омическое сопротивление тела базы. У реальных транзисторов достигает значений 100 … 200 Ом;

- r э - сопротивление р -п -перехода, значение которого зависит от режима работы транзистора и меняется в активном режиме в пределах долей - десятков Ом;

B - дифференциальный коэффициент передачи тока базы, определяемый из выражения

; (1.25)

Сопротивление коллекторной области, определяемое из выражения

, (1.26)

где r к - дифференциальное сопротивление коллекторного перехода (обычно находится в пределах доли - десятки МОм), определяемое из выражения

(1.27)

Рассмотрим кратко работу n-р-n -транзистора. На границе раздела полупроводников с n (электронной)- и р (дырочной)-типами проводимостей за счет диффузии возникает область разноименных объемных зарядов. Она образована ионизированными атомами акцепторной и донорной примесей и обеднена подвижными носителями заряда: электронами и дырками. Поле контактной разности потенциалов, образующееся между зарядами, представляет собой потенциальный барьер, препятствующий диффузионному переходу носителей.

Если на эмиттерный переход подано прямое смещение (как показано на рис. 4), то потенциальный барьер уменьшается, и из эмиттера в базу будут инжектироваться электроны. Концентрация дырок в базе обычно существенно ниже концентрации электронов в эмиттере, и инжекцией дырок в эмиттер можно пренебречь. Поэтому ток эмиттера i 3 образуется электронной составляющей потока носителей. Инжектированные из эмиттера электроны являются в базе неосновными носителями зарядов и будут, главным образом за счет диффузии, двигаться сквозь базу по направлению к коллекторному переходу. На коллектор относительно базы подается положительное напряжение, что соответствует обратному смещению коллекторного перехода. Достигшие коллекторного перехода электроны втягиваются его полем в область коллектора и образуют ток коллектора i к. Так как толщина базы мала, а концентрация дырок в ней невелика, то только небольшая часть электронов рекомбинирует (объединяется) с дырками базы; остальные электроны достигают коллекторного перехода. Рекомбинация электронов в базе вызывает соответствующий ток во внешней цепи - ток базы i б.

Между токами эмиттера, базы и коллектора существуют очевидные соотношения:

где α - коэффициент передачи тока эмиттера; он принимает, в зависимости от типа транзистора, значения в интервале от 0,95 до 0,99. Из приведенных соотношений получаем зависимость тока коллектора от тока базы:

Параметр (3)

называется коэффициентом передачи тока базы и составляет 20÷100. Говорят, что в транзисторе происходит усиление тока базы.

3.3. Вольтамперные характеристики биполярного
транзистора в схеме с общим эмиттером

Свойства биполярного транзистора определяются семействами статических вольтамперных характеристик, которые выражают взаимосвязь его токов и напряжений. Вид этих характеристик зависит от схемы включения транзистора. Наиболее популярной является схема с общим эмиттером (рис. 5). Входными характеристиками является семейство i б = F (u бэ) при u кэ = const (рис. 6, a). Они подобны характеристикам полупроводникового диода. Выходные характеристики представляют семейство i к = F (u кэ) при

i б = const (рис. 6, б).

При малом u кэ, когда i б >0 (т.е. u бэ ≥ 0,6 В), коллекторный переход (как и эмиттерный) оказывается смещенным в прямом направлении, поэтому не все инжектированные в базу электроны попадают в область коллектора.

Транзистор работает здесь в режиме насыщения , так как увеличение тока базы не приводит к увеличению тока коллектора. Соответствующие этому режиму характеристики сливаются в линию Б . Далее с ростом u кэ ток коллектора i к сначала быстро растет, а затем почти не изменяется.

С увеличением тока базы, который является частью тока эмиттера, ток коллектора также возрастает, и статические характеристики смещаются вверх. Транзистор работает здесь в активном режиме и выступает как регулятор тока. Следует отметить довольно высокую линейность связи коллекторного и базового токов, что проявляется в эквидистантном расположении пологих участков коллекторных характеристик. Наконец, при обратном смещении эмиттерного перехода (т.е. u бэ < 0,6 В) последний заперт, и через транзистор протекает неуправляемый (его называют сквозным) ток i кэс. Такой режим называется режимом отсечки тока. Характеристика i б = 0 (линия А) разделяет области активного режима и отсечки.

3.4. Описание транзистора h-параметрами и его
эквивалентная схема

При анализе транзисторных схем в режиме малого сигнала транзистор удобно представлять в виде линейного четырехполюсника (рис. 7) и описывать связь токов и напряжений на входе и выходе четырьмя параметрами. Для описания транзисторов обычно используют удобные в измерении так называемые гибридные h -параметры; введем их.

Возьмем в качестве независимых переменных входной ток i 1 и выходное напряжение u 2 . Тогда входное напряжение u 1 и выходной ток i 2 будут некоторыми нелинейными функциями выбранных независимых переменных:

При малых изменениях токов и напряжений приращения входного напряжения и выходного тока для активной области можно записать в виде

Здесь производные вычисляются для некоторых постоянных значений тока и напряжения I 1,0 , U 2,0 , которые характеризуют режим транзистора по постоянному току. Обозначим эти константы

Роль малых приращений могут играть малые переменные токи и напряжения с амплитудами I 1 , I 2 и U 1 , U 2 . Тогда зависимость между переменными токами и напряжениями в транзисторе будет описываться системой линейных уравнений с h -параметрами:

(4а)

. (4б)

Согласно (4), параметр h 11 является входным сопротивлением транзистора, а h 21 - коэффициентом передачи тока при коротком замыкании выхода (U 2 = 0); h 22 - выходная проводимость, а h 12 - коэффициент обратной связи по напряжению при разомкнутом входе (I 1 = 0). Параметр h 21 равен α для схемы с общей базой и β - для схемы с общим эмиттером.

Конкретные значения h -параметров различаются для разных типов транзисторов, схем их включения и режима по постоянному току I 1,0 , U 2,0 ; h -параметры могут быть также вычислены из статических вольт-амперных характеристик транзистора, если последние известны.

В соответствии с уравнениями (4) транзистор формально можно представить эквивалентной схемой, показанной на рис. 8. Генератор тока h 21 I 1 , в выходной цепи учитывает эффект усиления тока, а генератор h 12 U 2 отражает наличие напряжения обратной связи во входной цепи.

Эквивалентная схема данного вида может использоваться для исследования транзисторных схем при малом гармоническом сигнале в широком диапазоне частот. В этом случае уравнения (4) записываются для комплексных амплитуд токов и напряжений, а сами h -параметры будут зависящими от частоты комплексными величинами. Для относительно низких частот h -параметры можно считать константами для выбранного режима транзистора по постоянному току. Например, для кремниевого n-р-n -транзистора КТ315Б при I к0 = 1 мА, U кэ0 = 10 В h -параметры в схеме с общим эмиттером обычно лежат в интервалах значений:

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается H fe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке V c . Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (V ce) взято из документации транзистора. Эмиттер подключен к GND, соответственно V ce = V c - 0 = V c . Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки R L неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения R b: Учитывая перегрузку в 10 раз, сопротивление R b может быть рассчитано по следующей формуле:

где V 1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V 1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение R b известно, транзистор "настроен" на работу в качестве переключателя, что также называется "режим насыщения и отсечки ", где "насыщение" - когда транзистор полностью открыт и проводит ток, а "отсечение" – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

H FE (β) меняется в зависимости от тока коллектора и напряжения V CEsat . Но V CEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший H FE , крупнейший V CEsat и V CEsat .

Типичное применение транзисторного ключа

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение V CE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные V CE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.


Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.


Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q» , после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.


Рис. 5. Полевые транзисторы
Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

φ= V T * ln (N n * N p )/n 2 i , где

V T величина термодинамического напряжения, N n и N p концентрация соответственно электронов и дырок, а n i обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.


Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: I к = ß* I Б , где ß коэффициент усиления по току, I Б ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).


Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению (< 1).

Как работает полевой транзистор? Пояснение для чайников

Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.

Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.


Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.


Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком



Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.


Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.


Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q» , после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.


Рис. 5. Полевые транзисторы
Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

φ= V T * ln (N n * N p )/n 2 i , где

V T величина термодинамического напряжения, N n и N p концентрация соответственно электронов и дырок, а n i обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.


Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: I к = ß* I Б , где ß коэффициент усиления по току, I Б ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).


Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению (< 1).

Как работает полевой транзистор? Пояснение для чайников

Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.

Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.


Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.


Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком