10.06.2021

Построение графиков иррациональных функций примеры. Графики и основные свойства элементарных функций. Корень n-ой степени, n - четное число


«Преобразование графиков функций» - Растяжение. Симметрия. Закрепить построение графиков функций с использованием преобразований графиков элементарных функций. Построение графиков сложных функций. Самостоятельная работа Вариант 1 Вариант 2. Параллельный перенос. Сопоставить каждому графику функцию. Преобразование графиков функций. Рассмотрим примеры преобразований, объясним каждый вид преобразования.

«Иррациональное уравнение» - Алгоритм решения уравнений. История неразумных чисел. Какой шаг в решении уравнения приводит к появлению лишних корней. «Урок-дискуссия». Найди ошибку. Введение. " Посредством уравнений, теорем Я уйму всяких разрешал проблем". Ход урока. В споре недопустимы оскорбления, упреки, недоброжелательность в отношении к своим одноклассникам.

«График функции» - Если линейная функция задана формулой вида у = kх, то есть b=0, она называется прямой пропорциональностью. Если линейная функция задана формулой у = b, то есть k=0, то её график проходит через точку с координатами (b;0) параллельно оси ОХ. Функция. Линейной функцией называется функция, которую можно задать формулой y = kx + b, где x - независимая переменная, k и b - некоторые числа.

Как построить график линейной функции? - Значение у, при котором x=3. Закрепление пройденного материала. Методическая тема. Построить график линейной функции у=-3х+6. - Определить свойства данной функции. Проверка: Ученик у доски. Изучение функций. Письменно с проверкой. В объёме школьной программы.

«График функции Y X» - Пример 1. Построим график функции y=(x - 2)2, опираясь на график функции y=x2 (щелчок мышкой). Чтобы увидеть графики, щелкни мышкой. Пример 2. Построим график функции y = x2 + 1, опираясь на график функции y=x2 (щелчок мышкой). Шаблон параболы у = х2. График функции y=(x - m)2 является параболой с вершиной в точке (m; 0).

«Иррациональные уравнения и неравенства» - Методы решения. 3. Введение вспомогательных переменных. 1. Возведение в степень. Иррациональные уравнения Методы решения. Иррациональные уравнения и неравенства. 2. Умножение на сопряженное выражение. 4. Выделение полного квадрата под знаком радикала. 6. Графический метод. Иррациональные неравенства.

В этой статье мы коротко суммируем сведения, которые касаются такого важного математического понятия, как функция. Мы поговорим о том, что такое числовая функция и какие необходимо знать и уметь исследовать.

Что такое числовая функция ? Пусть у нас есть два числовых множества: Х и Y, и между этими множествами есть определенная зависимость. То есть каждому элементу х из множества Х по определенному правилу ставится в соответствие единственный элемент y из множества Y.

Важно, что каждому элементу х из множества Х соответствует один и только один элемент y из множества Y.

Правило, с помощью которого каждому элементу из множества Х мы ставим в соответствие единственный элемент из множества Y, называется числовой функцией.

Множество Х называется областью определения функции.

Множество Y называется множеством значений значений функции.

Равенство называется уравнением функции. В этом уравнении - независимая переменная, или аргумент функции. - зависимая переменная.

Если мы возьмем все пары и поставим им в соответствие соответствующие точки координатной плоскости, то получим график функции. График функции - это графической изображение зависимости между множествами Х и Y.

Свойства функции мы можем определить, глядя на график функции, и, наоборот, исследуя мы можем построить ее график.

Основные свойства функций.

1. Область определения функции.

Область определения функции D(y) -это множество всех допустимых значений аргумента x (независимой переменной x), при которых выражение, стоящее в правой части уравнения функции имеет смысл. Другими словами, это выражения .

Чтобы по графику функции найти ее область определения, н ужно, двигаясь слева направо вдоль оси ОХ , записать все промежутки значений х, на которых существует график функции.

2. Множество значений функции.

Множество значений функции Е(y) - это множество всех значений, которые может принимать зависимая переменная y.

Чтобы по графику функции найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.

3. Нули функции.

Нули функции - это те значения аргумента х, при которых значение функции (y) равно нулю.

Чтобы найти нули функции , нужно решить уравнение . Корни этого уравнения и будут нулями функции .

Чтобы найти нули функции по ее графику, нужно найти точки пересечения графика с осью ОХ. Абсциссы точек пересечения и будут нулями функции .

4. Промежутки знакопостоянства функции.

Промежутки знакопостоянства функции - это такие промежутки значений аргумента, на которых функция сохраняет свой знак, то есть или .

Чтобы найти , нужно решить неравенства и .

Чтобы найти промежутки знакопостоянства функции по ее графику, нужно

5. Промежутки монотонности функции.

Промежутки монотонности функции - это такие промежутки значений аргумента х, при которых функция возрастает или убывает.

Говорят, что функция возрастает на промежутке I, если для любых двух значений аргумента , принадлежащих промежутку I таких, что выполняется соотношение:.

Другими словами, функция возрастает на промежутке I, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Чтобы по графику функции определить промежутки возрастания функции, нужно, двигаясь слева направо по линии графика функции, выделить промежутки значений аргумента х, на которых график идет вверх.

Говорят, что функция убывает на промежутке I, если для любых двух значений аргумента , принадлежащих промежутку I таких, что выполняется соотношение: .

Другими словами, функция убывает на промежутке I, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Чтобы по графику функции определить промежутки убывания функции, нужно, двигаясь слева направо вдоль линии графика функции, выделить промежутки значений аргумента х, на которых график идет вниз.

6. Точки максимума и минимума функции.

Точка называется точкой максимума функции , если существует такая окрестность I точки , что для любой точки х из этой окрестности выполняется соотношение:

.

Графически это означает что точка с абсциссой x_0 лежит выше других точек из окрестности I графика функции y=f(x).

Точка называется точкой минимума функции , если существует такая окрестность I точки , что для любой точки х из этой окрестности выполняется соотношение:

Графически это означает что точка с абсциссой лежит ниже других точек из окрестности I графика функции .

Обычно мы находим точки максимума и минимума функции, проводя исследование функции с помощью производной.

7. Четность (нечетность) функции.

Функция называется четной, если выполняются два условия:

Другими словами, область определения четной функции симметрична относительно начала координат.

б) Для любого значения аргумента х, принадлежащего области определения функции, выполняется соотношение .

Функция называется нечетной, если выполняются два условия:

а) Для любого значения аргумента , принадлежащего области определения функции, также принадлежит области определения функции.

Данный методический материал носит справочный характер и относится к широкому кругу тем. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопроскак правильно и БЫСТРО построить график . В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций .

Я не претендую на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практике – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики . Графики для чайников? Можно сказать и так.

По многочисленным просьбам читателей кликабельное оглавление :

Кроме того, есть сверхкраткий конспект по теме
– освойте 16 видов графиков, изучив ШЕСТЬ страниц!

Серьёзно, шесть, удивился даже я сам. Данный конспект содержит улучшенную графику и доступен за символическую плaту , демо-версию можно посмотреть . Файл удобно распечатать, чтобы графики всегда были под рукой. Спасибо за поддержку проекта!

И сразу начинаем:

Как правильно построить координатные оси?

На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.

Любой чертеж графика функции начинается с координатных осей .

Чертежи бывают двухмерными и трехмерными.

Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат :

1) Чертим координатные оси. Ось называется осью абсцисс , а ось – осью ординат . Чертить их всегда стараемся аккуратно и не криво . Стрелочки тоже не должны напоминать бороду Папы Карло.

2) Подписываем оси большими буквами «икс» и «игрек». Не забываем подписывать оси .

3) Задаем масштаб по осям: рисуем ноль и две единички . При выполнении чертежа самый удобный и часто встречающийся масштаб: 1 единица = 2 клеточки (чертеж слева) – по возможности придерживайтесь именно его. Однако время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда масштаб уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко, но бывает, что масштаб чертежа приходится уменьшать (или увеличивать) еще больше

НЕ НУЖНО «строчить из пулемёта» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Декарту, а студент – не голубь. Ставим ноль и две единицы по осям . Иногда вместо единиц удобно «засечь» другие значения, например, «двойку» на оси абсцисс и «тройку» на оси ординат – и эта система (0, 2 и 3) тоже однозначно задаст координатную сетку.

Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа . Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярный масштаб 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем более мелкий масштаб 1 единица = 1 клеточка.

Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно. Если честно, в такие моменты начинаешь задумываться о правоте товарища Сталина, который отправлял в лагеря за халтуру на производстве, не говоря уже об отечественном автомобилестроении, падающих самолетах или взрывающихся электростанциях.

К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, полное гомно. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая то мажет, то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым.

Дополнительно : вИдение прямоугольной системы координат глазами аналитической геометрии освещается в статье Линейная (не) зависимость векторов. Базис векторов , подробную информацию о координатных четвертях можно найти во втором параграфе урока Линейные неравенства .

Трехмерный случай

Здесь почти всё так же.

1) Чертим координатные оси. Стандарт: ось аппликат – направлена вверх, ось – направлена вправо, ось – влево вниз строго под углом 45 градусов.

2) Подписываем оси.

3) Задаем масштаб по осям. Масштаб по оси – в два раза меньше, чем масштаб по другим осям . Также обратите внимание, что на правом чертеже я использовал нестандартную «засечку» по оси (о такой возможности уже упомянуто выше) . С моей точки зрения, так точнее, быстрее и эстетичнее – не нужно под микроскопом выискивать середину клетки и «лепить» единицу впритык к началу координат.

При выполнении трехмерного чертежа опять же – отдавайте приоритет масштабу
1 единица = 2 клетки (чертеж слева).

Для чего нужны все эти правила? Правила существуют для того, чтобы их нарушать. Чем я сейчас и займусь. Дело в том, что последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Я бы мог начертить все графики от руки, но чертить их на самом деле жуть как неохота Эксель их начертит гораздо точнее.

Графики и основные свойства элементарных функций

Линейная функция задается уравнением . График линейной функций представляет собой прямую . Для того, чтобы построить прямую достаточно знать две точки.

Пример 1

Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если , то

Берем еще какую-нибудь точку, например, 1.

Если , то

При оформлении заданий координаты точек обычно сводятся в таблицу:


А сами значения рассчитываются устно или на черновике, калькуляторе.

Две точки найдены, выполним чертеж:


При оформлении чертежа всегда подписываем графики .

Не лишним будет вспомнить частные случаи линейной функции:


Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа . В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых , или справа внизу между графиками.

1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс».

3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1».

Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или .

Построение прямой – самое распространенное действие при выполнении чертежей.

Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости .

График квадратичной, кубической функции, график многочлена

Парабола. График квадратичной функции () представляет собой параболу. Рассмотрим знаменитый случай:

Вспоминаем некоторые свойства функции .

Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы. Почему это так, можно узнать из теоретической статьи о производной и урока об экстремумах функции . А пока рассчитываем соответствующее значение «игрек»:

Таким образом, вершина находится в точке

Теперь находим другие точки, при этом нагло пользуемся симметричностью параболы. Следует заметить, что функция не является чётной , но, тем не менее, симметричность параболы никто не отменял.

В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

Данный алгоритм построения образно можно назвать «челноком» или принципом «туда-сюда» с Анфисой Чеховой.

Выполним чертеж:


Из рассмотренных графиков вспоминается еще один полезный признак:

Для квадратичной функции () справедливо следующее:

Если , то ветви параболы направлены вверх .

Если , то ветви параболы направлены вниз .

Углублённые знания о кривой можно получить на уроке Гипербола и парабола .

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

График функции

Он представляет собой одну из ветвей параболы . Выполним чертеж:


Основные свойства функции :

В данном случае ось является вертикальной асимптотой для графика гиперболы при .

Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой .

Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу .

Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси .

Таким образом, ось является горизонтальной асимптотой для графика функции, если «икс» стремится к плюс или минус бесконечности.

Функция является нечётной , а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: .

График функции вида () представляет собой две ветви гиперболы .

Если , то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше).

Если , то гипербола расположена во второй и четвертой координатных четвертях .

Указанную закономерность места жительства гиперболы нетрудно проанализировать с точки зрения геометрических преобразований графиков .

Пример 3

Построить правую ветвь гиперболы

Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Выполним чертеж:


Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

Детальную геометрическую информацию о рассмотренной линии можно найти в статье Гипербола и парабола .

График показательной функции

В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

Напоминаю, что – это иррациональное число: , это потребуется при построении графика, который, собственно, я без церемоний и построю. Трёх точек, пожалуй, хватит:

График функции пока оставим в покое, о нём позже.

Основные свойства функции :

Принципиально так же выглядят графики функций , и т. д.

Должен сказать, что второй случай встречается на практике реже, но он встречается, поэтому я счел нужным включить его в данную статью.

График логарифмической функции

Рассмотрим функцию с натуральным логарифмом .
Выполним поточечный чертеж:

Если позабылось, что такое логарифм, пожалуйста, обратитесь к школьным учебникам.

Основные свойства функции :

Область определения :

Область значений: .

Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.
Исследуем поведение функции вблизи нуля справа: . Таким образом, ось является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа.

Обязательно нужно знать и помнить типовое значение логарифма : .

Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

Случай рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде в задачах высшей математики ооочень редкий гость.

В заключение параграфа скажу еще об одном факте: Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции . Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.

Графики тригонометрических функций

С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

Построим график функции

Данная линия называется синусоидой .

Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

Основные свойства функции :

Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

Область определения : , то есть для любого значения «икс» существует значение синуса.

Область значений: . Функция является ограниченной : , то есть, все «игреки» сидят строго в отрезке .
Такого не бывает: или , точнее говоря, бывает, но указанные уравнения не имеют решения.

Тема урока: Построение графиков функций, содержащих модули . Знакомство с функциями ЕСЛИ и ABS .

Учитель математики и информатики МОБУ СОШ №2 села Новобелокатай, Белокатайского района Галиуллина Юлия Рафаиловна.

Учебник «Алгебра и начала математического анализа. 10-11 класс» под ред. Колмогорова, Угринович Н.Д. «Информатика и ИКТ 10 класс».

Тип урока: обучающий урок с применением информационных технологий.

Цель урока: проверить знания, умения, навыки по данной теме.

Задачи урока:

Обучающая

    систематизация и обобщение знаний по данной теме;

    научить определять наиболее удобный метод решения;

    научить строить графики функции с использованием электронной таблицы.

Развивающая

    развитие способности самоконтроля;

    активизация мыслительной деятельности учащихся;

Воспитательная

воспитание мотивов учения, добросовестного отношения к труду.

Методы обучения: частично-поисковый, исследовательский, индивидуальный.

Форма организации учебной деятельности: индивидуальная, фронтальная, карточки.

Средства обучения: мультимедийный проектор, экран, карточки

Ход урока

I . Организационный момент

Приветствие, проверка присутствующих. Объяснение хода урока

II . Повторение

    Закрепление знаний по построению графиков в табличном процессоре.

Фронтальный опрос.

-Как вставить график в Е xcel ?

- Какие виды графиков существуют в Е xcel ?

    Закрепление знаний по теме график с модулями.

- В чем смысл функции с модулем?

Разбор примера: y = | x | – 2.

Нужно рассмотреть два случая, когда х=0. Если х=0, то функция будет выглядеть y = x – 2. Построить в тетрадях график данной функции.

А теперь построим график функции с помощью табличного процессора MS Excel. График данной функции можно построить двумя способами:

1 способ: Использование функции ЕСЛИ

    Для того чтобы построить график для начала нам нужно заполнить таблицу значений Х и У.

    Называем ячейку А2-Х, ячейку В2-У. Следовательно в столбце А будет значение переменной, в столбце В значение функции.

    В столбец А вводим переменной в интервале от -5 до 5 с шагом 0,5. Для этого в ячейку А3 вводим -5, а в ячейку А4 формулу =A4+0,5, копируем формулу в последующие ячейки, так как здесь относительная адресация то формула будет меняться при копировании.

    После заполнения значений Х, переходим ко второму столбцу, для заполнения которого нужно ввести формулу. В ячейку В4 вводим формулу, в которой используем функцию ЕСЛИ.

    Функция «Если» в электронных таблицах MS Excel (Категория - Логические) анализирует результат выражения или содержимое указанной ячейки и помещает в заданную ячейку одно из двух возможных значений или выражений.

    Синтаксис функции «ЕСЛИ».

=ЕСЛИ (Логическое выражение; Значение_если_истина; Значение_если_ложь) . Логическое выражение или условие, которое может принимать значение ИСТИНА или ЛОЖЬ. Значение_если_истина – значение, которое принимает логическое выражение в случае его выполнения. Значение_если_ложь – значение, которое принимает логическое выражение в случае его невыполнения».

Логические выражения или условия строятся с помощью операторов сравнения (, =, =) и логических операций (И, ИЛИ, НЕ).

Рис.22 Функция ЕСЛИ

Функция ЕСЛИ относится к логическим.

    Вспоминаем смысл функции с модулем: если х=0, то функция будет выглядеть y = x – 2.

Данную формулировку нужно ввести в ячейку В4 в понятном таблице виде. Значение Х находится в столбце А, следовательно если А4

А4-2, иначе =А4-2.

Рис.23 Аргументы функции ЕСЛИ

Формула имеет вид: =ЕСЛИ(A5A5-2;A5-2)

    После заполнения таблицы значений. Строим график функции

    Пункт меню Вставка-Диаграммы-Точечная. Выбираем один из макетов. На листе появляется пустое поле диаграммы. В контекстном меню данного поля выбираем пункт Выбрать данные. Появляется диалоговое окно Выбрать данные.

    В данном диалоговом окне выбираем имя ряда в ячейке А1 или же также можно ввести название с клавиатуры.

    В поле значение Х выбираем столбец, в который мы вводили значение переменной.

    В поле значение У выбираем столбец, в котором мы с помощью условного оператора ЕСЛИ находили значение функции.

Рис. 24. График функции y = | x | – 2.

2 способ: Использование функции ABS

Также для построения графика с модулем, можно использовать функцию ABS.

Построим график функции y = | x | – 2 с помощью функции ABS.

    В примере 2 даны значения переменной Х.

    В ячейку В4 вводим формулу с использованием функции АВS

Рис.25. Ввод функции ABS с помощью мастера функций

    Формула будет иметь вид: =ABS(A4)-2.

IV . Выполнение практической работы

После разбора двух примеров ученикам раздается практическое задание.

В этих заданиях вам приведены несколько функций с модулями. Вы должны выбрать какую из функции целесообразнее применять в каждом из примеров.

Практическая работа

Ученики рассматривают линейную функцию y = x – 2 и строят её график.

Задача 1. Построить график функции y = | x – 2 |

Задача 2. Построить график функции y = | x | – 2

Задача 3. Построить график уравнения | y | = x – 2

Ученики рассматривают квадратичную функцию y = x 2 – 2х – 3 и строят график.

Задача 1. Построить график функции y = | x 2 – 2х – 3 |

Задача 2. Построить график функции y = | x 2 | – 2 | х | - 3

Задача 3. Построить график уравнения | y | = x 2 – 2х - 3

V . Информация о домашнем задании.

VI .Подведение итогов урока, рефлексия. Ученики и учитель подводят итоги урока, анализируют выполнение поставленных задач.

Основными элементарными функциями называются следующие:

Степенная функция , где ;

Показательная функция , где ;

Логарифмическая функция где ;

Тригонометрические функции ;

Обратные тригонометрические функции: ,

Элементарными функциями являются основные элементарные функции и те, которые можно образовать из них с помощью конечного числа операций (сложение, вычитание, умножение, деление) и суперпозиции, например:

Назовем некоторые классы элементарных функций.

Целая рациональная функция , или многочлен , где n- целое неотрицательное число (степень многочлена), - постоянные числа (коэффициенты).

Дробно-рациональная функция , которая является отношением двух целых рациональных функций:

Целые рациональные и дробно-рациональные функции образуют класс рациональных функций .

Иррациональная функция – это та, которая изображается с помощью суперпозиций рациональных функций и степенных функций с рациональными целыми показателями, например:

Рациональные и иррациональные функции образуют класс алгебраических функций.

СПРАВОЧНЫЙ МАТЕРИАЛ

Степенная функция

Рис. 2.1. Рис. 2.2.

Рис. 2.3. Рис. 2.4.

Рис. 2.5. Обратно пропорциональная Рис. 2.6. Обратно пропорциональная

зависимость зависимость

Рис. 2.7. Степенная функция с положительным рациональным

показателем

Рис. 2.8. Степенная функция с положительным рациональным

показателем

Рис. 2.9. Степенная функция с положительным рациональным

показателем

Рис. 2.10. Степенная функция с отрицательным рациональным

показателем

Рис. 2.11. Степенная функция с отрицательным рациональным



показателем

Рис. 2.12. Степенная функция с отрицательным

рациональным показателем

Рис. 2.13. Показательная функция

Рис. 2.14. Логарифмическая функция

3p/2 -p/2 0 p/2 3p/2 x

Рис. 2.15. Тригонометрическая функция

3p/2 p/2 p/2 3p/2

Рис. 2.16. Тригонометрическая функция

P/2 p/2 -p p/2 3p/2

P 0 p x -p/2 0 p x

Рис. 2.17. Тригонометрическая Рис. 2.18. Тригонометрическая

функция функция

Рис. 2.19. Обратная тригономет- Рис. 2.20. Обратная тригонометри-

рическая функция ческая функция

Рис. 2.21. Обратная тригонометрическая Рис. 2.22. Обратная тригонометри-

функция ческая функция

Рис. 2.23. Обратная тригонометри- Рис. 2.24. Обратная тригонометри- ческая функция ческая функция

Рис. 2.25. Обратная тригонометри- Рис. 2.26. Обратная тригонометрическая

ческая функция функция

УКАЗАНИЯ К ВЫПОЛНЕНИЮ ТИПОВОГО РАСЧЕТА

Задача 1.

По графику функции путем сдвигов и деформаций построить график функции .

Построение заданной функции проводится в несколько этапов, которые мы здесь рассмотрим. Функцию будем называть основной .

Построение графика функции .

Предположим, что для некоторых x 1 и x 2 основная и заданная функции имеют равные ординаты, то есть . Но тогда должно быть и

В зависимости от знака a возможны два случая.

1. Если a > 0, то точка графика функции смещена вдоль оси OX на a единиц вправо по сравнению с точкой N(x,y) графика функции f(x) (рис. 3.1).

2. Если a < 0, то точка смещена вдоль оси OX на единиц влево по сравнению с точкой N(x,y) графика функции f(x) (рис. 3.2). Таким образом получаем

y N(x; y) M(x+a; y) M(x+a; y) y N(x; y)

0 x x+a x x+a 0 x x

Рис. 3.1 Рис. 3.2

Правило 1. Если a > 0, то график функции f(x-a) получается из графика основной функции f(x) путем его параллельного переноса вдоль оси OX на “a” единиц вправо .

Если a < 0, то график функции f(x-a) получается из графика основной функции f(x) путем его параллельного переноса вдоль оси OX на единиц влево .

Примеры. Построить графики функций: 1) ; 2) .

1) Здесь a = 2 > 0. Строим график функции . Сдвинув его на 2 единицы вправо вдоль оси OX, получим график функции

2) Здесь a = -3 < 0. Строим график функции . Сдвинув его на 3 единицы влево, получим график функции (рис. 3.4).


Y=(x+3) 2 y=x 2

1 0 1 2 3 x -3 -2 -1 0 1 2 x

Рис. 3.3 Рис. 3.4

Замечание. Построение графика функции можно выполнить иначе: построив график основной функции в системе надо перенести ось на а единиц влево , если , и на единиц вправо, если . Тогда в системе получим график функции . Система имеет вспомогательное значение, поэтому ось изображается пунктирно или карандашом.

В качестве примера построим еще раз графики функций и (рис. 3.5) и (рис. 3.6)

0 1 2 x -3 -2 -1 0 x

Рис. 3.5 Рис. 3.6

Построение графика функции где

Пусть для некоторых значений и ординаты функций и равны, то есть . Тогда и . Таким образом, каждой точке графика основной функции соответствует точка графика функции Возможны два случая.

1. Если , то точка лежит в k раз ближе к оси OY, чем точка (рис. 3.7).

2. Если же 0 < k < 1, то точка лежит в раз дальше от оси OY по сравнению с точкой (рис. 3.8). Таким образом, происходит сжатие или растяжение графика функции.

Рис. 3.7 Рис. 3.8

Правило 2. Пусть k > 1. Тогда график функции f(kx) получается из графика функции f(x) путем его сжатия вдоль оси OX в k раз (иначе: его сжатием к оси OY в k раз).

Пусть 0 < k < 1. Тогда график f(kx) получается из графика f(x) путем его растяжения вдоль оси OX в раз.

Примеры. Построить графики функций: 1) и ;

2 -1 0 ½ 1 2 x 0 p/2 p 2p x

Рис. 3.9 Рис. 3.10

1. Строим график функции - кривая (1) на рис. 3.9. Сжав его в два раза к оси OY, получим график функции - кривая (2) на рис. 3.9. При этом, например, точка (1; 0) переходит в точку , точка переходит в точку .

Замечание. Обратите внимание: точка , лежащая на оси OY, остается на месте. Действительно, всякой точке N(0, y) графика f(x) соответствует точка графика f(kx).

График функции получается растяжением графика функции от оси OY в 2 раза. При этом снова точка остается без изменения (кривая (3) на рис. 3.9).

2. По графику функции , построенному в промежутке , строим графики функций - кривые (1), (2), (3) на рис. 3.10. Обратите внимание, что точка (0; 0) остается неподвижной.

Построение графика функции y=f(-x).

Функции f(x) и f(-x) принимают равные значения для противоположных значений аргумента x. Следовательно, точки N(x;y) и M(-x;y) их графиков будут симметричны относительно оси OY.

Правило 3. Чтобы построить график f(-x), надо график функции f(x) зеркально отразить относительно оси OY.

Примеры.

Решения показаны на рис. 3.11 и 3.12.

Рис. 3.11 Рис. 3.12

Построение графика функции y=f(-kx), где k > 0.

Правило 4. Строим график функции y=f(kx) в соответствии с правилом 2. График функции f(kx) зеркально отражаем от оси OY в соответствии с прави-

лом 3. В результате получим график функции f(-kx).

Примеры. Построить графики функций

Решения показаны на рис. 3.13 и 3.14.

1/2 0 1/2 x -p/2 0 p/2 x

Рис. 3.13 Рис. 3.14

Построение графика функции , где A > 0. Если A > 1, то для каждого значения ордината заданной функции в А раз больше, чем ордината основной функции f(x). В этом случае происходит растяжение графика f(x) в А раз вдоль оси OY (иначе: от оси OX).

Если же 0 < A < 1, то происходит сжатие графика f(x) в раз вдоль оси OY (или от оси OX).

Правило 5. Пусть A > 1. Тогда график функции получается из графика f(x) путем его растяжения в А раз вдоль оси OY (или от оси OX).

Пусть 0 < A < 1. Тогда график функции получается из графика f(x) путем его сжатия в раз вдоль оси OY (или к оси OX).

Примеры. Построить графики функций 1) , и 2) ,

1 0 p/2 p p/3 p x

Рис. 3.15 Рис. 3.16

Построение графика функции .

Для каждого точки N(x,y) функции f(x) и M(x, -y) функции -f(x) симметричны относительно оси OX, поэтому получаем правило.

Правило 6. Для построения графика функции надо график зеркально отразить относительно оси OX.

Примеры. Построить графики функций и (рис. 3.17 и 3.18).

0 1 x 0 π /2 π 3π/2 2π x

Рис. 3.17 Рис. 3.18

Построение графика функции , где A>0.

Правило 7. Строим график функции , где A>0, в соответствии с правилом 5. Полученный график отражаем зеркально от оси OX в соответствии с правилом 6.

Построение графика функции .

Если B>0, то для каждого ордината заданной функции на B единиц больше, чем ордината f(x). Если же B<0, то для каждого ордината первой функции уменьшается на единиц по сравнению с ординатой f(x). Таким образом, получаем правило.

Правило 8. Чтобы построить график функции по графику y=f(x), надо этот график перенести вдоль оси OY на В единиц вверх, если B>0, или на единиц вниз, если B<0.

Примеры. Построить графики функций: 1) и

2) (рис. 3.19 и 3.20).


0 x 0 π/2 π 3π/2 2π x

Рис. 3.19 Рис. 3.20

Схема построения графика функции .

Прежде всего запишем уравнение функции в виде и обозначим . Тогда график функции строим по следующей схеме.

1. Строим график основной функции f(x).

2. В соответствии с правилом 1 строим график f(x-a).

3. Путем сжатия или растяжения графика f(x-a) с учетом знака k по правилам 2-4 строим график функции f .

Обратите внимание: сжатие или растяжение графика f(x-a) происходит относительно прямой x=a (почему?)

4. По графику в соответствии с правилами 5-7 строим график функции .

5. Полученный график сдвигаем вдоль оси OY в соответствии с правилом 8.

Обратите внимание: на каждом шаге построения в качестве графика основной функции выступает предыдущий график.

Пример. Построить график функции . Здесь k=-2, поэтому . Учитывая нечетность , имеем .

1. Строим график основной функции .

2. Сместив его вдоль оси OX на единицы вправо, получим график функции

(рис. 3.21).

3. Полученный график сжимаем в 2 раза к прямой и таким образом получаем график функции (рис. 3.22).

4. Сжав к оси OX последний график в 2 раза и зеркально отразив его от оси OX, получим график функции (рис. 3.22 и 3.23).

5. Наконец, смещением на вверх по оси OY получаем график искомой функции (рис. 3.23).

1 0 1/2 3/2 x 0 1 3/2 2 x

Рис. 3.21 Рис. 3.22

0 1 3/2 2 x -π/2 0 π/2 x

Рис. 3.23 Рис. 3.24

Задача 2.

Построение графиков функций, содержащих знак модуля.

Решение этой задачи также состоит из нескольких этапов. При этом необходимо помнить определение модуля:

Построение графика функции .

Для тех значений , для которых , будет . Поэтому здесь графики функций и f(x) совпадают. Для тех же , для которых f(x)<0, будет . Но график -f(x) получается из графика f(x) зеркальным отражением от оси OX. Получаем правило построения графика функции .

Правило 9. Строим график функции y=f(x). После этого ту часть графика f(x), где , оставляем без изменения, а ту его часть, где f(x)<0, зеркально отражаем от оси OX.

Замечание. Обратите внимание, что график всегда лежит выше оси OX или касается ее.

Примеры. Построить графики функций

(рис. 3.24, 3.25, 3.26).

Рис. 3.25 Рис. 3.26

Построение графика функции .

Так как , то , то есть задана четная функция, график которой симметричен относительно оси OY.

Правило 10. Строим график функции y=f(x) при . Отражаем построенный график от оси OY. Тогда совокупность двух полученных кривых даст график функции .

Примеры. Построить графики функций

(рис.3.27, 3.28, 3.29)

-π/2 0 π/2 x -2 0 2 x -1 1 x

Рис. 3.27 Рис. 3.28 Рис. 3.29

Построение графика функции .

Строим график функции по правилу 10.

Строим график функции по правилу 9.

Примеры. Построить графики функций и .

1. Строим график функции (рис. 3.28)

Отрицательную часть графика отражаем от оси OX. График изображен на рис. 3.30.

2 0 2 x -1 0 1 x

Рис. 3.30 Рис. 3.31

2. Строим график функции (рис. 3.29).

Отражаем отрицательную часть графика от оси OX. График изображен на рис. 3.31.

При построении графика функции, содержащей знаки модуля, весьма существенно знать промежутки знакопостоянства функции. Поэтому решение каждой задачи необходимо начинать с определения этих промежутков.

Пример. Построить график функции .

Область определения . Выражения x+1 и x-1 изменяют свои знаки в точках x=-1 и x=1. Поэтому область определения разобьем на четыре промежутка:


Учитывая знаки x+1 и x-1, имеем

Таким образом, функцию можно записать без знаков модуля следующим образом:

Функциям соответствуют гиперболы, а функции y=2 – прямая линия. Дальнейшее построение можно провести по точкам (рис. 3.32).

x -4 -2 -1 -
y

4 -3 -2 -1 0 1 2 3 4 x

Замечание. Обратите внимание, что при x=0 функция не определена. Говорят, что функция в этой точке терпит разрыв. На рис. 3.32 это отмечено стрелками.

Задача 3. Построение графика функции, заданной несколькими аналитическими выражениями.

В предыдущем примере функцию мы представили несколькими аналитическими выражениями. Так, в промежутке она изменяется по закону гиперболы ; в промежутке , кроме x=0, это линейная функция; в промежутке снова имеем гиперболу . Подобные функции часто будут встречаться в последующем. Рассмотрим простой пример.

Путь поезда от станции А до станции B состоит из трех участков. На первом участке он набирает скорость, то есть в промежутке его скорость , где . На втором участке он движется с постоянной скоростью, то есть v=c, если . Наконец, при торможении его скорость будет . Таким образом, в промежутке скорость движения изменяется по закону

Построим график этой функции, полагая a 1 =2, c=2, b=6, a 2 =1 (рис. 3.33).

0 1 2 3 4 5 6 x 0 π/2 π x

Рис. 3.33 Рис. 3.34

В этом примере скорость v изменяется непрерывно. Однако в общем случае процесс может протекать более сложно. Так, функция

имеет более сложный график (рис. 3.34), который в точке терпит разрыв.

Таким образом, если задана функция

то надо построить график функции y=f(x) в промежутке и график функции в промежутке . Совокупность двух таких линий даст график заданной функции.

Задача 4. Построение кривых, заданных параметрически.

Задание кривой L параметрически характеризуется тем, что координаты x,y каждой точки задаются как функции некоторого параметра t:

При этом в качестве параметра t может выступать время, угол поворота и т.д.

К параметрическому заданию кривой L прибегают в тех случаях, когда трудно или вообще невозможно выразить явным образом y как функцию аргумента x , то есть y=f(x). Приведем некоторые примеры.

Пример 1. Декартовым листом называется кривая L , уравнение которой имеет вид .

Положим здесь , тогда или , то есть , . Итак, параметрические уравнения декартова листа имеют вид: , , где .

Кривая изображена на рис. 3.35. Она имеет асимптоту y=-a-x.